Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gilteritinib enhances graft-versus-leukemia effects against FLT3-ITD mutant leukemia after allogeneic hematopoietic stem cell transplantation

Abstract

Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a potentially curative therapy for FLT3 internal tandem duplication mutant (FLT3-ITD+) acute myeloid leukemia, but relapse rate is high. A recent study showed that sorafenib, a first generation FLT3 and multikinase inhibitor, enhanced graft-versus-leukemia (GVL) effects against FLT3-ITD+ leukemia via interleukin-15 (IL-15) production. However, it remains to be clarified whether this effect could be mediated by selective FLT3 inhibition. We investigated whether gilteritinib, a selective FLT3 inhibitor, could enhance GVL effects against FLT3-ITD transfected Ba/F3 leukemia (Ba/F3-FLT3-ITD) in mice. Oral administration of gilteritinib from day +5 to +14 after allo-SCT reduced expression of the co-inhibitory receptors PD-1 and TIGIT on donor CD8+ T cells and enhanced IL-15 expression in Ba/F3-FLT3-ITD. Bioluminescent imaging using luciferase-transfected Ba/F3-FLT3-ITD demonstrated that gilteritinib significantly suppressed leukemia expansion after allo-SCT, whereas it did not impact the morbidity or mortality of graft-versus-host disease (GVHD), resulting in significant improvement of overall survival. In conclusion, short-term administration of gilteritinib after allo-SCT enhanced GVL effects against FLT3-ITD+ leukemia without exacerbating GVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FLT3-ITD inhibitors promote IL-15 expression in Ba/F3-FLT3-ITD cells.
Fig. 2: Gilteritinib enhances GVL effects against Ba/F3-FLT3-ITD-luc leukemia.

Similar content being viewed by others

References

  1. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–8. e-pub ahead of print.

    CAS  PubMed  Google Scholar 

  2. Levis M, Perl AE. Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Adv. 2020;4:1178–91. https://doi.org/10.1182/bloodadvances.2019000174. e-pub ahead of print.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10. https://doi.org/10.1038/nature10738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15:926–57. https://doi.org/10.6004/jnccn.2017.0116. e-pub ahead of print.

    Article  PubMed  Google Scholar 

  5. Mathew NR, Baumgartner F, Braun L, O’Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282–91. https://doi.org/10.1038/nm.4484. e-pub ahead of print.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bornhauser M, Illmer T, Schaich M, Soucek S, Ehninger G, Thiede C, et al. Improved outcome after stem-cell transplantation in FLT3/ITD-positive AML. Blood. 2007;109:2264–5. https://doi.org/10.1182/blood-2006-09-047225. author reply 2265. e-pub ahead of print.

    Article  PubMed  Google Scholar 

  7. Canaani J, Labopin M, Huang XJ, Arcese W, Ciceri F, Blaise D, et al. T-cell replete haploidentical stem cell transplantation attenuates the prognostic impact of FLT3-ITD in acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Am J Hematol. 2018;93:736–44. https://doi.org/10.1002/ajh.25082. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  8. Brunet S, Labopin M, Esteve J, Cornelissen J, Socie G, Iori AP, et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol. 2012;30:735–41. https://doi.org/10.1200/JCO.2011.36.9868. e-pub ahead of print.

    Article  PubMed  Google Scholar 

  9. Schmid C, Labopin M, Socie G, Daguindau E, Volin L, Huynh A, et al. Outcome of patients with distinct molecular genotypes and cytogenetically normal AML after allogeneic transplantation. Blood. 2015;126:2062–9. https://doi.org/10.1182/blood-2015-06-651562. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  10. DeZern AE, Sung A, Kim S, Smith BD, Karp JE, Gore SD, et al. Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: outcomes from 133 consecutive newly diagnosed patients from a single institution. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2011;17:1404–9. https://doi.org/10.1016/j.bbmt.2011.02.003. e-pub ahead of print.

    Article  Google Scholar 

  11. Didion JP, Buus RJ, Naghashfar Z, Threadgill DW, Morse HC 3rd, de Villena FP. SNP array profiling of mouse cell lines identifies their strains of origin and reveals cross-contamination and widespread aneuploidy. BMC Genomics. 2014;15:847 https://doi.org/10.1186/1471-2164-15-847. e-pub ahead of print.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li S, Ilaria RL Jr, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med. 1999;189:1399–412. https://doi.org/10.1084/jem.189.9.1399. e-pub ahead of print.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naviaux RK, Costanzi E, Haas M, Verma IM. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol. 1996;70:5701–5. https://doi.org/10.1128/JVI.70.8.5701-5705.1996. e-pub ahead of print.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.

    Article  CAS  Google Scholar 

  15. Teshima T, Hill GR, Pan L, Brinson YS, van den Brink MR, Cooke KR, et al. IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Investig. 1999;104:317–25. https://doi.org/10.1172/JCI7111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244. e-pub ahead of print.

    Article  CAS  Google Scholar 

  17. Burchert A. Maintenance therapy for FLT3-ITD-mutated acute myeloid leukemia. Haematologica. 2021;106:664–70. https://doi.org/10.3324/haematol.2019.240747. e-pub ahead of print.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Metzelder SK, Schroeder T, Finck A, Scholl S, Fey M, Gotze K, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26:2353–9. https://doi.org/10.1038/leu.2012.105. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  19. Safaian NN, Czibere A, Bruns I, Fenk R, Reinecke P, Dienst A, et al. Sorafenib (Nexavar) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD+ acute myeloid leukemia. Leuk Res. 2009;33:348–50. https://doi.org/10.1016/j.leukres.2008.04.017. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  20. Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A, et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood. 2009;113:6567–71. https://doi.org/10.1182/blood-2009-03-208298. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  21. Burchert A, Bug G, Fritz LV, Finke J, Stelljes M, Rollig C, et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3-internal tandem duplication mutation (SORMAIN). J Clin Oncol. 2020: JCO1903345. https://doi.org/10.1200/JCO.19.03345. e-pub ahead of print.

  22. Xuan L, Wang Y, Huang F, Fan Z, Xu Y, Sun J. et al. Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial. Lancet Oncol. 2020. https://doi.org/10.1016/S1470-2045(20)30455-1. e-pub ahead of print.

  23. Uhl FM, Chen S, O’Sullivan D, Edwards-Hicks J, Richter G, Haring E, et al. Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Sci Transl Med. 2020;12. https://doi.org/10.1126/scitranslmed.abb8969. e-pub ahead of print.

  24. Franco F, Jaccard A, Romero P, Yu YR, Ho PC. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2:1001–12. https://doi.org/10.1038/s42255-020-00280-9. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  25. Asakura S, Hashimoto D, Takashima S, Sugiyama H, Maeda Y, Akashi K, et al. Alloantigen expression on non-hematopoietic cells reduces graft-versus-leukemia effects in mice. J Clin Investig. 2010;120:2370–8.

    Article  CAS  Google Scholar 

  26. Blazar BR, Carreno BM, Panoskaltsis-Mortari A, Carter L, Iwai Y, Yagita H, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol. 2003;171:1272–7. https://doi.org/10.4049/jimmunol.171.3.1272. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  27. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76:2462–5. e-pub ahead of print.

    Article  CAS  Google Scholar 

  28. Johnson BD, Truitt RL. Delayed infusion of immunocompetent donor cells after bone marrow transplantation breaks graft-host tolerance allows for persistent antileukemic reactivity without severe graft-versus-host disease. Blood. 1995;85:3302–12. e-pub ahead of print.

    Article  CAS  Google Scholar 

  29. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6:595–601. https://doi.org/10.1038/nri1901. e-pub ahead of print.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Gerard Grosveld (Department of Genetics, St. Jude Children’s Research Hospital) for providing pMSCV-lus-IRES-YFP plasmid and Dr. Inder Verma (Addgene) for providing pCL-Eco.

Funding

This study was supported by JSPS KAKENHI (21K08409 to DH, 21390295 to TT, 20K17366 to HO, 21K16259 to TA, JP21H02775 to MN), Japan Society of Hematology Research Fund (TT), the Center of Innovation Program from JST (TT).

Author information

Authors and Affiliations

Authors

Contributions

DH and TT developed the conceptual framework of the study, designed the experiments, analyzed the data and wrote the paper. ZZ and YH conducted experiments, analyzed data, and wrote the paper. HS, RK, XC, KY, TS, TK, HT, TI, TA, and HO conducted experiments. MN supervised experiments.

Corresponding author

Correspondence to Daigo Hashimoto.

Ethics declarations

Competing interests

TT received a research grant from Kyowa Kirin, Chugai, Sanofi, Astellas, TEIJIN PHARMA, Fuji Pharma, NIPPON SHINYAKU, Personal Fees from Novartis, Merck, Kyowa Kirin, Takeda, Pfizer, Bristol-Myers Squibb, Non-Financial Support from Janssen, Novartis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Hasegawa, Y., Hashimoto, D. et al. Gilteritinib enhances graft-versus-leukemia effects against FLT3-ITD mutant leukemia after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 57, 775–780 (2022). https://doi.org/10.1038/s41409-022-01619-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-022-01619-4

This article is cited by

Search

Quick links