Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human leukocyte antigen (HLA) haplotype matching in unrelated single HLA allele mismatch bone marrow transplantation

Abstract

The role of matching human leukocyte antigen (HLA) haplotypes in unrelated allogeneic bone marrow transplantation (allo-BMT) remains unclear. Here, we imputed the HLA haplotypes of 3657 patients who received unrelated single HLA allele-mismatched allo-BMT, included from the Transplant Registry Unified Management Program (TRUMP) database, the Japanese registry program for hematopoietic transplantation, using mathematical methods. We successfully imputed the HLA haplotypes of both patients and donors in 1365 cases (37.3%) with ≥90% probability. Of the patients, 1326 (97.1%) and 39 (2.9%) were categorized into one-haplotype-matched and no-haplotype-matched groups, respectively. Disease-free survival was significantly worse in the no-haplotype-matched group. Multivariate analyses revealed that no-haplotype-match was an independent risk factor for reducing disease-free survival (hazard ratio, 1.54 [95% confidence interval: 1.01–2.36]; p = 0.047). However, the overall survival did not significantly differ between the groups. The incidence of grade III–IV acute and chronic graft-versus-host disease did not significantly differ between the groups. Furthermore, there were no significant differences in the cumulative incidences of relapse and non-relapse mortality between the groups. Our findings suggest that imputing haplotypes using a mathematical approach can help to avoid transplanting patients with donors who do not share matching haplotypes, thereby improving the outcome of allo-BMT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Algorithm used to impute individual HLA haplotypes.
Fig. 2: Disease-free survival and overall survival based on haplotype matching.
Fig. 3: Cumulative incidences of relapse and non-relapse mortality.
Fig. 4: Cumulative incidences of grade III–IV acute GVHD and chronic GVHD.
Fig. 5: Comparison of frequencies of the imputed haplotypes.

Similar content being viewed by others

References

  1. Kanda Y, Kanda J, Atsuta Y, Maeda Y, Ichinohe T, Ohashi K, et al. Impact of a single human leucocyte antigen (HLA) allele mismatch on the outcome of unrelated bone marrow transplantation over two time periods. A retrospective analysis of 3003 patients from the HLA Working Group of the Japan Society for Blood and Marrow Transplantation. Br J Haematol. 2013;161:566–77. https://doi.org/10.1111/bjh.12279. e-pub ahead of print 5 May 2013.

    Article  CAS  PubMed  Google Scholar 

  2. Ikeda N, Kojima H, Nishikawa M, Hayashi K, Futagami T, Tsujino T, et al. Determination of HLA-A, -C, -B, -DRB1 allele and haplotype frequency in Japanese population based on family study. Tissue Antigens. 2015;85:252–9. https://doi.org/10.1111/tan.12536. e-pub ahead of print 20 March 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gambino CM, Aiello A, Accardi G, Caruso C, Candore G. Autoimmune diseases and 8.1 ancestral haplotype: an update. HLA. 2018;92:137–43. https://doi.org/10.1111/tan.13305.

    Article  CAS  PubMed  Google Scholar 

  4. Furuzawa-Carballeda J, Zuñiga J, Hernández-Zaragoza DI, Barquera R, Marques-García E, Jiménez-Alvarez L. et al. An original Eurasian haplotype, HLA-DRB1*14:54-DQB1*05:03, influences the susceptibility to idiopathic achalasia. PLoS ONE. 2018;13:e0201676. https://doi.org/10.1371/journal.pone.0201676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szabó K, Polyánka H, Kiricsi Á, Révész M, Vóna I, Szabó Z. et al. A conserved linkage group on chromosome 6, the 8.1 ancestral haplotype, is a predisposing factor of chronic rhinosinusitis associated with nasal polyposis in aspirin-sensitive Hungarians. Hum Immunol. 2015;76:858–62. https://doi.org/10.1016/j.humimm.2015.09.048.

    Article  CAS  PubMed  Google Scholar 

  6. Miller FW, Chen W, O’Hanlon TP, Cooper RG, Vencovsky J, Rider LG, et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun. 2015; 16: 470; https://doi.org/10.1038/gene.2015.28; https://www.nature.com/articles/gene201528#supplementary-information.

  7. Kolte AM, Nielsen HS, Steffensen R, Crespi B, Christiansen OB. Inheritance of the 8.1 ancestral haplotype in recurrent pregnancy loss. Evol Med Public Health. 2015;2015:325–31. https://doi.org/10.1093/emph/eov031.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Corvol H, Beucher J, Boëlle P-Y, Busson P-F, Muselet-Charlier C, Clement A. et al. Ancestral haplotype 8.1 and lung disease severity in European cystic fibrosis patients. J Cyst Fibros. 2012;11:63–67. https://doi.org/10.1016/j.jcf.2011.09.006.

    Article  PubMed  Google Scholar 

  9. Morishima S, Ogawa S, Matsubara A, Kawase T, Nannya Y, Kashiwase K. et al. Impact of highly conserved HLA haplotype on acute graft-versus-host disease. Blood. 2010;115:4664–70. https://doi.org/10.1182/blood-2009-10-251157.

    Article  CAS  PubMed  Google Scholar 

  10. Kawase T, Tanaka H, Kojima H, Uchida N, Ohashi K, Fukuda T, et al. Impact of high-frequency HLA haplotypes on clinical cytomegalovirus reactivation in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25:2482–9. https://doi.org/10.1016/j.bbmt.2019.07.042. e-pub ahead of print 11 August 2019.

    Article  CAS  PubMed  Google Scholar 

  11. Petersdorf EW. The major histocompatibility complex: a model for understanding graft-versus-host disease. Blood.2013;122:1863–72. https://doi.org/10.1182/blood-2013-05-355982. e-pub ahead of print 24 July 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petersdorf EW, Malkki M, Gooley TA, Spellman SR, Haagenson MD, Horowitz MM. et al. MHC-resident variation affects risks after unrelated donor hematopoietic cell transplantation. Sci Transl Med. 2012;4:144ra101. https://doi.org/10.1126/scitranslmed.3003974. e-pub ahead of print 28 July 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petersdorf EW, Malkki M, Gooley TA, Martin PJ, Guo Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. 2007;4:e8. https://doi.org/10.1371/journal.pmed.0040008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nowak J, Nestorowicz K, Graczyk-Pol E, Mika-Witkowska R, Rogatko-Koros M, Jaskula E, et al. HLA-inferred extended haplotype disparity level is more relevant than the level of HLA mismatch alone for the patients survival and GvHD in T cell-replate hematopoietic stem cell transplantation from unrelated donor. Hum Immunol. 2018;79:403–12. https://doi.org/10.1016/j.humimm.2018.03.011. e-pub ahead of print 2018/04/02.

    Article  CAS  PubMed  Google Scholar 

  15. Kanda J, Kawase T, Tanaka H, Kojima H, Morishima Y, Uchida N, et al. Effects of haplotype matching on outcomes after adult single-cord blood transplantation. Biol Blood Marrow Transplant. 2020;26:509–18. https://doi.org/10.1016/j.bbmt.2019.09.035. e-pub ahead of print 13 October 2019.

    Article  PubMed  Google Scholar 

  16. Atsuta Y. Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016;103:3–10. https://doi.org/10.1007/s12185-015-1894-x.

    Article  PubMed  Google Scholar 

  17. Kanda J. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation. Int J Hematol. 2016;103:11–19. https://doi.org/10.1007/s12185-015-1907-9.

    Article  CAS  PubMed  Google Scholar 

  18. Atsuta Y, Suzuki R, Yoshimi A, Gondo H, Tanaka J, Hiraoka A, et al. Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System. Int J Hematol. 2007;86:269–74. https://doi.org/10.1532/ijh97.06239. e-pub ahead of print 9 November 2007.

    Article  PubMed  Google Scholar 

  19. Kuwatsuka Y. Quality control and assurance in hematopoietic stem cell transplantation data registries in Japan and other countries. Int J Hematol. 2016;103:20–24. https://doi.org/10.1007/s12185-015-1896-8. e-pub ahead of print 14 November 2015.

    Article  PubMed  Google Scholar 

  20. Hardy GH. Mendelian proportions in a mixed population. Science. 1908;28:49–50. https://doi.org/10.1126/science.28.706.49.

    Article  CAS  PubMed  Google Scholar 

  21. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15:825–8. e-pub ahead of print 1 June 1995.

    CAS  PubMed  Google Scholar 

  22. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med. 1980;69:204–17. https://doi.org/10.1016/0002-9343(80)90380-0.

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81. https://doi.org/10.1080/01621459.1958.10501452.

    Article  Google Scholar 

  24. Cox DR. Regression models and life-tables. J R Stat Soc Series B Methodol. 1972; 34: 187–220.

  25. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509. https://doi.org/10.2307/2670170.

    Article  Google Scholar 

  26. Kanda J, Ikegame K, Fuji S, Kurokawa M, Kanamori H, Fukuda T. et al. Haploidentical and matched sibling donor hematopoietic cell transplantation for patients with HLA-homozygous haplotypes. Biol Blood Marrow Transpl. 2016;22:2031–7. https://doi.org/10.1016/j.bbmt.2016.07.020.

    Article  Google Scholar 

  27. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982; 5: 649–55. e-pub ahead of print 1 December 1982.

  28. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2012;48:452. https://doi.org/10.1038/bmt.2012.244.

    Article  Google Scholar 

  29. Yabe T, Matsuo K, Hirayasu K, Kashiwase K, Kawamura-Ishii S, Tanaka H. et al. Donor killer immunoglobulin-like receptor (KIR) genotype-patient cognate KIR ligand combination and antithymocyte globulin preadministration are critical factors in outcome of HLA-C-KIR ligand-mismatched T cell-replete unrelated bone marrow transplantation. Biol Blood Marrow Transpl. 2008;14:75–87. https://doi.org/10.1016/j.bbmt.2007.09.012.

    Article  Google Scholar 

  30. Morishima Y, Yabe T, Matsuo K, Kashiwase K, Inoko H, Saji H. et al. Effects of HLA allele and killer immunoglobulin-like receptor ligand matching on clinical outcome in leukemia patients undergoing transplantation with T-cell–replete marrow from an unrelated donor. Biol Blood Marrow Transpl. 2007;13:315–28. https://doi.org/10.1016/j.bbmt.2006.10.027.

    Article  CAS  Google Scholar 

  31. Heidenreich S, Kröger N. Reduction of relapse after unrelated donor stem cell transplantation by KIR-based graft selection. Front Immunol. 2017;8:41. https://doi.org/10.3389/fimmu.2017.00041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boudreau JE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: Stay tuned. Trend Immunol. 2018;39:222–39. https://doi.org/10.1016/j.it.2017.12.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate all physicians and data managers associated with the Japan Society for Hematopoietic Cell Transplantation. We thank the staff members of the Data Center of the Japan Society for Hematopoietic Cell Transplantation. We would also like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

AK designed the research, wrote the code of haplotype imputation tool, performed the statistical analysis, and analyzed the data. TK, HT, SM and JK analyzed and interpreted the data. TF, JM, YO, TE, NU, TM, TA, TK, MO, TI and YA gathered and organized the data. AK wrote the first draft, and all other authors contributed to the final version.

Corresponding author

Correspondence to Akihisa Kawajiri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawajiri, A., Kawase, T., Tanaka, H. et al. Human leukocyte antigen (HLA) haplotype matching in unrelated single HLA allele mismatch bone marrow transplantation. Bone Marrow Transplant 57, 407–415 (2022). https://doi.org/10.1038/s41409-021-01552-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01552-y

Search

Quick links