Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HSCT remains the only cure for patients with transfusion-dependent thalassemia until gene therapy strategies are proven to be safe

Abstract

Patients with β-thalassemia suffer from severe anemia, iron overload and multiple complications, that affect their quality of life and well-being. Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-matched sibling donor, performed in childhood, has been the gold standard for thalassemic patients for decades. Unfortunately, siblings are available only for the minority of patients. Fully matched unrelated donors have been the second choice for cure, with equal results as far as overall survival is concerned, having though the cost of frequent and serious complications. On the other hand, haploidentical transplantation is performed more frequently during the last decade, with promising results. Gene therapy represents a novel therapeutic approach, with impressive results from clinical trials, both from gene addition strategies, as well as from the emerging gene editing tools. After reviewing current critical points of HSCT using alternative donors and assessing recently reported safety issues of gene therapy methods, we conclude that, although a breakthrough, the safety of gene therapy remains to be established.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Origa R. beta-Thalassemia. Genet Med: Off J Am Coll Med Genet. 2017;19:609–19.

    CAS  Article  Google Scholar 

  2. 2.

    Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet (Lond, Engl). 2018;391:155–67.

    Article  Google Scholar 

  3. 3.

    Kwiatkowski JL. Current recommendations for chelation for transfusion-dependent thalassemia. Ann N. Y Acad Sci. 2016;1368:107–14.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Swaminathan VV, Uppuluri R, Patel S, Ravichandran N, Ramanan KM, Vaidhyanathan L, et al. Matched family versus alternative donor hematopoietic stem cell transplantation for patients with thalassemia major: experience from a tertiary referral center in South India. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2020;26:1326–31.

    CAS  Article  Google Scholar 

  5. 5.

    Zhang ZM, Lai YR, Li QC, Luo L, Liu RR, Shi LL, et al. Clinical analysis of autoimmune hemolytic anemia after allogeneic hematopoietic stem cell transplantation in thalassemia major. Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi. 2018;39:908–11.

    CAS  PubMed  Google Scholar 

  6. 6.

    Oikonomopoulou C, Paisiou A, Komitopoulou A, Ioannidou ED, Kaisari A, Tzannou I, et al. Increased incidence of autoimmune cytopenias after allogeneic haematopoietic stem cell transplantation using a matched unrelated donor in children with β-thalassaemia. Br J Haematol. 2021;192:e127–e129.

    PubMed  Article  Google Scholar 

  7. 7.

    Strocchio L, Romano M, Cefalo MG, Vinti L, Gaspari S, Locatelli F. Cord blood transplantation in children with hemoglobinopathies. Expert Opin Orphan Drugs. 2015;3:1125–36.

    CAS  Article  Google Scholar 

  8. 8.

    Jaing TH, Hung IJ, Yang CP, Chen SH, Chung HT, Tsay PK, et al. Unrelated cord blood transplantation for thalassaemia: a single-institution experience of 35 patients. Bone Marrow Transplant. 2012;47:33–9.

    PubMed  Article  Google Scholar 

  9. 9.

    Ruggeri A, Eapen M, Scaravadou A, Cairo MS, Bhatia M, Kurtzberg J, et al. Umbilical cord blood transplantation for children with thalassemia and sickle cell disease. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2011;17:1375–82.

    Article  Google Scholar 

  10. 10.

    Gluckman E, Ruggeri A, Volt F, Cunha R, Boudjedir K, Rocha V. Milestones in umbilical cord blood transplantation. Br J Haematol. 2011;154:441–7.

    PubMed  Article  Google Scholar 

  11. 11.

    Rahal I, Galambrun C, Bertrand Y, Garnier N, Paillard C, Frange P, et al. Late effects after hematopoietic stem cell transplantation for β-thalassemia major: the French national experience. Haematologica.2018;103:1143–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Angelucci E. Complication free survival long-term after hemopoietic cell transplantation in thalassemia. Haematologica.2018;103:1094–6.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Chaudhury S, Ayas M, Rosen C, Ma M, Viqaruddin M, Parikh S, et al. A multicenter retrospective analysis stressing the importance of long-term follow-up after hematopoietic cell transplantation for β-Thalassemia. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2017;23:1695–700.

    Article  Google Scholar 

  14. 14.

    Vlachopapadopoulou E, Kitra V, Peristeri J, Goussetis E, Karachaliou F, Petropoulos D, et al. Gonadal function of young patients with beta-thalassemia following bone marrow transplantation. J Pediatr Endocrinol Metab: JPEM. 2005;18:477–83.

    PubMed  Article  Google Scholar 

  15. 15.

    Santarone S, Pepe A, Meloni A, Natale A, Pistoia L, Olioso P, et al. Secondary solid cancer following hematopoietic cell transplantation in patients with thalassemia major. Bone Marrow Transplant. 2018;53:39–43.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Brendel C, Williams DA. Current and future gene therapies for hemoglobinopathies. Curr Opin Hematol. 2020;27:149–54.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Sii-Felice K, Giorgi M, Leboulch P, Payen E. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice. Exp Hematol. 2018;64:12–32.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Cavazzana M, Antoniani C, Miccio A. Gene therapy for β-Hemoglobinopathies. Mol Ther. 2017;25:1142–54.

  19. 19.

    Schuessler-Lenz M, Enzmann H, Vamvakas S. Regulators’ advice can make a difference: European medicines agency approval of zynteglo for beta thalassemia. Clin Pharmacol Therapeutics. 2020;107:492–4.

    Article  Google Scholar 

  20. 20.

    Frangoul H, Bobruff Y, Cappellini MD, Corbacioglu S, Fernandez CM, de la Fuente J, et al. Safety and efficacy of CTX001 in patients with transfusion-dependent β-Thalassemia and sickle cell disease: early results from the climb THAL-111 and climb SCD-121 studies of autologous CRISPR-CAS9–modified CD34 + Hematopoietic stem and progenitor cells, 62nd ASH Annual Meeting & Exposition 2020.

  21. 21.

    Contu L, La Nasa G, Arras M, Ledda A, Pizzati A, Vacca A, et al. Successful unrelated bone marrow transplantation in beta-thalassaemia. Bone Marrow Transplant. 1994;13:329–31.

    CAS  PubMed  Google Scholar 

  22. 22.

    Feng Z, Sun E, Lan H, Zhang C, Li Q, Zhu W. Unrelated donor bone marrow transplantation for beta-thalassemia major: an experience from China. Bone Marrow Transplant. 2006;37:171–4.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Zhu WG, Feng ZC, Li QP, Zhong CX, Li ZD, Lu ZG. Unrelated bone marrow transplantation for beta-thalassemia major: report of the first 2 successful cases in Asia. Di 1 jun yi da xue xue bao = Academic J first Med Coll PLA. 2003;23:281–2.

    Google Scholar 

  24. 24.

    Cheng CN, Lu CC, Sun HF, Su WC, Chen JS. Successful matched-unrelated bone marrow transplantation in a patient with beta-thalassemia major. J Pediatr Hematol/Oncol. 2002;24:579–81.

    Article  Google Scholar 

  25. 25.

    La Nasa G, Argiolu F, Giardini C, Pession A, Fagioli F, Caocci G, et al. Unrelated bone marrow transplantation for beta-thalassemia patients: the experience of the Italian Bone Marrow Transplant Group. Ann N. Y Acad Sci. 2005;1054:186–95.

    PubMed  Article  Google Scholar 

  26. 26.

    La Nasa G, Caocci G, Argiolu F, Giardini C, Locatelli F, Vacca A, et al. Unrelated donor stem cell transplantation in adult patients with thalassemia. Bone Marrow Transplant. 2005;36:971–5.

    PubMed  Article  Google Scholar 

  27. 27.

    La Nasa G, Giardini C, Argiolu F, Locatelli F, Arras M, De Stefano P, et al. Unrelated donor bone marrow transplantation for thalassemia: the effect of extended haplotypes. Blood.2002;99:4350–6.

    PubMed  Article  Google Scholar 

  28. 28.

    Shenoy S, Thompson AA. Unrelated donor stem cell transplantation for transfusion-dependent thalassemia. Ann N. Y Acad Sci. 2016;1368:122–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Hussein AA, Al-Zaben A, Ghatasheh L, Natsheh A, Hammada T, Abdel-Rahman F, et al. Risk adopted allogeneic hematopoietic stem cell transplantation using a reduced intensity regimen for children with thalassemia major. Pediatr Blood Cancer. 2013;60:1345–9.

    PubMed  Article  Google Scholar 

  30. 30.

    Sodani P, Isgrò A, Gaziev J, Polchi P, Paciaroni K, Marziali M, et al. Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia. Blood.2010;115:1296–302.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Anurathapan U, Pakakasama S, Rujkijyanont P, Sirachainan N, Songdej D, Chuansumrit A, et al. Pretransplant immunosuppression followed by reduced-toxicity conditioning and stem cell transplantation in high-risk thalassemia: a safe approach to disease control. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2013;19:1259–62.

    Article  Google Scholar 

  32. 32.

    Gaziev J, Isgrò A, Sodani P, Marziali M, Paciaroni K, Gallucci C, et al. Optimal outcomes in young class 3 patients with thalassemia undergoing HLA-identical sibling bone marrow transplantation. Transplantation.2016;100:925–32.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Choudhary D, Sharma SK, Gupta N, Kharya G, Pavecha P, Handoo A, et al. Treosulfan-thiotepa-fludarabine-based conditioning regimen for allogeneic transplantation in patients with thalassemia major: a single-center experience from north India. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2013;19:492–5.

    CAS  Article  Google Scholar 

  34. 34.

    Mullanfiroze K, Uppuluri R, Subburaj D, Jayaraman D, Venkateswaran VS, Raj R, et al. Matched unrelated donor HSCT for thalassemia major using treosulphan based conditioning protocol for children: a single center experience from India. Pediatr Hematol Oncol J. 2017;2:7–11.

    Article  Google Scholar 

  35. 35.

    Bernardo ME, Piras E, Vacca A, Giorgiani G, Zecca M, Bertaina A, et al. Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan. Blood.2012;120:473–6.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Mathews V, George B, Viswabandya A, Abraham A, Ahmed R, Ganapule A, et al. Improved clinical outcomes of high risk β thalassemia major patients undergoing a HLA matched related allogeneic stem cell transplant with a treosulfan based conditioning regimen and peripheral blood stem cell grafts. PloS ONE. 2013;8:e61637.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Sun L, Wang N, Chen Y, Tang L, Xing C, Lu N, et al. Unrelated donor peripheral blood stem cell transplantation for patients with β-Thalassemia major based on a novel conditioning regimen. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2019;25:1592–6.

    Article  Google Scholar 

  38. 38.

    Goussetis E, Peristeri I, Kitra V, Vessalas G, Paisiou A, Theodosaki M, et al. HLA-matched sibling stem cell transplantation in children with beta-thalassemia with anti-thymocyte globulin as part of the preparative regimen: the Greek experience. Bone Marrow Transplant. 2012;47:1061–6.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    John MJ, Mathew A, Philip CC, Singh S, Tanuja T, Kakkar N. Unrelated and related donor transplantation for beta-thalassemia major: a single-center experience from India. Pediatr Transplant. 2018;22:e13209.

    PubMed  Article  Google Scholar 

  40. 40.

    Li C, Mathews V. Related and unrelated donor transplantation for beta-thalassemia major: results of an international survey. 2019;3:2562–70.

  41. 41.

    Porter J. Beyond transfusion therapy: new therapies in thalassemia including drugs, alternate donor transplant, and gene therapy. Hematol Am Soc Hematol Educ Program. 2018;2018:361–70.

    Article  Google Scholar 

  42. 42.

    Oevermann L, Schulte JH, Hundsdörfer P, Hakimeh D, Kogel F, Lang P, et al. HLA-haploidentical hematopoietic stem cell transplantation in pediatric patients with hemoglobinopathies: current practice and new approaches. Bone Marrow Transplant. 2019;54:743–8.

    PubMed  Article  Google Scholar 

  43. 43.

    Locatelli F, Merli P, Strocchio L. Transplantation for thalassemia major: alternative donors. Curr Opin Hematol. 2016;23:515–23.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Gaziev D, Galimberti M, Lucarelli G, Polchi P, Giardini C, Angelucci E, et al. Bone marrow transplantation from alternative donors for thalassemia: HLA-phenotypically identical relative and HLA-nonidentical sibling or parent transplants. Bone Marrow Transplant. 2000;25:815–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Gaziev J, Marziali M, Isgrò A, Sodani P, Paciaroni K, Gallucci C, et al. Bone marrow transplantation for thalassemia from alternative related donors: improved outcomes with a new approach. Blood.2013;122:2751–6.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Gaziev J, Isgrò A, Sodani P, Paciaroni K, De Angelis G, Marziali M, et al. Haploidentical HSCT for hemoglobinopathies: improved outcomes with TCRαβ(+)/CD19(+)-depleted grafts. Blood Adv. 2018;2:263–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Hongeng S, Pakakasama S, Chaisiripoomkere W, Ungkanont A, Jootar S. Nonmyeloablative stem cell transplantation with a haploidentical donor in a class 3 lucarelli severe thalassemia patient. Bone Marrow Transplant. 2004;34:271–2.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Jaing TH, Sun CF, Lee WI, Wen YC, Yang CP, Hung IJ. Successful unmanipulated peripheral blood progenitor cell transplantation from an HLA haploidentical 2-locus-mismatched mother in a thalassemic patient with primary graft failure after transplantation of bone marrow and cord blood from unrelated donors. Pediatr Transplant. 2008;12:232–4.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Anurathapan U, Hongeng S, Pakakasama S, Songdej D, Sirachainan N, Pongphitcha P, et al. Hematopoietic stem cell transplantation for severe thalassemia patients from haploidentical donors using a novel conditioning regimen. Biol Blood Marrow Transplant. 2020;26:1106–12.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Anurathapan U, Hongeng S, Pakakasama S, Sirachainan N, Songdej D, Chuansumrit A, et al. Hematopoietic stem cell transplantation for homozygous β-thalassemia and β-thalassemia/hemoglobin E patients from haploidentical donors. Bone Marrow Transplant. 2016;51:813–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Sun Q, Wu B. Haploidentical haematopoietic stem cell transplantation for thalassaemia major based on an FBCA conditioning regimen. Br J Haematol. 2018;182:554–8.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Bolaños-Meade J, Cooke KR, Gamper CJ, Ali SA, Ambinder RF, Borrello IM, et al. Effect of increased dose of total body irradiation on graft failure associated with HLA-haploidentical transplantation in patients with severe haemoglobinopathies: a prospective clinical trial. Lancet Haematol. 2019;6:e183–e93.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Vellaichamy Swaminathan V, Ravichandran N, Ramanan KM, Meena SK, Varla H, Ramakrishnan B, et al. Augmented immunosuppression and PTCY-based haploidentical hematopoietic stem cell transplantation for thalassemia major. 2020;25:e13893.

  54. 54.

    Shaw BE, Jimenez-Jimenez A, Burns LJ, Logan B, Khimani F, Shaffer BC, et al. 297 Bridging the gap in access to transplant for underserved minority patients using mismatched unrelated donors and post-transplant cyclophosphamide: a National Marrow Donor Program/be the Match (NMDP/BTM) Initiative. 62nd ASH Annual Meeeting and Exposition. 2020.

  55. 55.

    Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion-dependent β-Thalassemia. N. Engl J Med. 2018;378:1479–93.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature.2010;467:318–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Marktel S, Scaramuzza S, Cicalese MP, Giglio F, Galimberti S, Lidonnici MR, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat Med. 2019;25:234–41.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Schneiderman J, Thompson AA, Walters MC, Kwiatkowski JL, Kulozik AE, Sauer MG, et al. Interim results from the phase 3 Hgb-207 (Northstar-2) and Hgb-212 (Northstar-3) studies of betibeglogene autotemcel gene therapy (LentiGlobin) for the treatment of transfusion-dependent β-Thalassemia. Biol Blood Marrow Transplant. 2020;26:S87–S8.

    Article  Google Scholar 

  59. 59.

    Zynteglo [Internet]. https://www.ema.europa.eu/en/medicines/human/EPAR/zynteglo. Podcast

  60. 60.

    Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nature Reviews Genetics. 2020;22:216–34.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Psatha N, Papayanni PG, Yannaki E. A new era for hemoglobinopathies: more than one curative option. Curr Gene Ther. 2017;17:364–78.

    CAS  PubMed  Google Scholar 

  62. 62.

    Dong AC, Rivella S. Gene addition strategies for β-Thalassemia and sickle cell anemia. Blood.2017;1013:155–76.

    CAS  Google Scholar 

  63. 63.

    Staal FJT, Aiuti A, Cavazzana M. Autologous stem-cell-based gene therapy for inherited disorders: state of the art and perspectives. Front Pediatrics. 2019;7:443.

    Article  Google Scholar 

  64. 64.

    Sii-Felice K, Negre O, Brendel C, Tubsuwan A, Morel-à-l’Huissier E, Filardo C, et al. Innovative therapies for hemoglobin disorders. BioDrugs.2020;34:625–47.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Antoniani C, Meneghini V. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood. 2018;131:1960–73.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Métais JY, Doerfler PA, Mayuranathan T, Bauer DE, Fowler SC, Hsieh MM, et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 2019;3:3379–92.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Wagenblast E, Azkanaz M, Smith SA, Shakib L, McLeod JL, Krivdova G, et al. Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells. Nat Commun. 2019;10:4730.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Ali G, Tariq MA, Shahid K, Ahmad FJ, Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene therapy. 2020;28:6-15.

    Google Scholar 

  69. 69.

    Nienhuis AW, Persons DA. Development of gene therapy for thalassemia. Cold Spring Harb Perspect Med. 2012;2:a011833.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Kunz JB, Kulozik AE. Gene therapy of the hemoglobinopathies. HemaSphere. 2020;4:e479.

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Soni S. Gene therapies for transfusion dependent β-thalassemia: current status and critical criteria for success. Am J Hematol. 2020;95:1099–112.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    La Nasa G, Caocci G, Efficace F, Dessì C, Vacca A, Piras E, et al. Long-term health-related quality of life evaluated more than 20 years after hematopoietic stem cell transplantation for thalassemia. Blood. 2013;122:2262–70.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Bluebird bio announces temporary suspension on phase 1/2 and phase 3 studies of lentiglobin gene therapy for sickle cell disease (bb1111) [press release].

  74. 74.

    Agarwal R, Dvorak CC, Kwon H-S, Long-Boyle JR, Prohaska SS, Brown JW. et al. Non-genotoxic anti-CD117 antibody conditioning results in successful hematopoietic stem cell engraftment in patients with severe combined immunodeficiency. Blood. 2019;134:800.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

CO wrote the paper and EG conceived the idea and critically reviewed the paper.

Corresponding author

Correspondence to Christina Oikonomopoulou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oikonomopoulou, C., Goussetis, E. HSCT remains the only cure for patients with transfusion-dependent thalassemia until gene therapy strategies are proven to be safe. Bone Marrow Transplant (2021). https://doi.org/10.1038/s41409-021-01461-0

Download citation

Search

Quick links