Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic susceptibility to acute graft versus host disease in pediatric patients undergoing HSCT

Abstract

The most frequent complication of allogeneic hematopoietic stem cell transplantation is acute Graft versus Host Disease (aGVHD). Proliferation and differentiation of donor T cells initiate inflammatory response affecting the skin, liver, and gastrointestinal tract. Besides recipient–donor HLA disparities, disease type, and the conditioning regimen, variability in the non-HLA genotype have an impact on aGVHD onset, and genetic variability of key cytokines and chemokines was associated with increased risk of aGVHD. To get further insight into the recipient genetic component of aGVHD grades 2–4 in pediatric patients, we performed an exome-wide association study in a discovery cohort (n = 87). Nine loci sustained correction for multiple testing and were analyzed in a validation group (n = 168). Significant associations were replicated for ERC1 rs1046473, PLEK rs3816281, NOP9 rs2332320 and SPRED1 rs11634702 variants through the interaction with non-genetic factors. The ERC1 variant was significant among patients that received the transplant from HLA-matched related individuals (p = 0.03), bone marrow stem cells recipients (p = 0.007), and serotherapy-negative patients (p = 0.004). NOP9, PLEK, and SPRED1 effects were modulated by stem cell source, and serotherapy (p < 0.05). Furthermore, ERC1 and PLEK SNPs correlated with aGVHD 3-4 independently of non-genetic covariates (p = 0.02 and p = 0.003). This study provides additional insight into the genetic component of moderate to severe aGVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cumulative incidence of aGVHD 2–4 in relation to top-ranking loci identified through validation analysis of replication cohort.
Fig. 2: Cumulative incidence of aGVHD 3–4 in replication cohort relative to the variants in ERC1 and PLEK genes.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available upon request. The request should be made to the data access committee composed of senior authors of this study: Dr. M. Krajinovic, maja.krajinovic@umontreal.ca; Dr. H. Bittencourt, henrique.bittencourt.hsj@ssss.gouv.qc.ca; Dr. M. Ansari, marc.ansari@hcuge.ch, and President of Ethics committee at SJUHC, G. Cardinal, genevieve.cardinal@recherche-ste-justine.qc.ca.

References

  1. Adom D, Rowan C, Adeniyan T, Yang J, Paczesny S. Biomarkers for allogeneic HCT outcomes. Front Immunol. 2020;11:673.

  2. Shaw PJ, Kan F, Woo Ahn K, Spellman SR, Aljurf M, Ayas M, et al. Outcomes of pediatric bone marrow transplantation for leukemia and myelodysplasia using matched sibling, mismatched related, or matched unrelated donors. Blood. 2010;116:4007–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eapen M, Horowitz MM, Klein JP, Champlin RE, Loberiza FR Jr., Ringdén O, et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J Clin Oncol. 2004;22:4872–80.

    Article  PubMed  Google Scholar 

  4. Alsultan A, Giller RH, Gao D, Bathurst J, Hild E, Gore L, et al. GVHD after unrelated cord blood transplant in children: characteristics, severity, risk factors and influence on outcome. Bone Marrow Transplant. 2011;46:668–75.

    Article  CAS  PubMed  Google Scholar 

  5. Zeiser R, Blazar BR. Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med. 2017;377:2167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martínez-Laperche C, Buces E, Aguilera-Morillo MC, Picornell A, González-Rivera M, Lillo R, et al. A novel predictive approach for GVHD after allogeneic SCT based on clinical variables and cytokine gene polymorphisms. Blood Adv. 2018;2:1719–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dzierzak-Mietla M, Markiewicz M, Siekiera U, Mizia S, Koclega A, Zielinska P, et al. Occurrence and impact of minor histocompatibility antigens’ disparities on outcomes of hematopoietic stem cell transplantation from HLA-matched sibling donors. Bone Marrow Res. 2012;2012:257086.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martin PJ, Levine DM, Storer BE, Warren EH, Zheng X, Nelson SC, et al. Genome-wide minor histocompatibility matching as related to the risk of graft-versus-host disease. Blood. 2017;129:791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim DDH, Yun J, Won H-H, Cheng L, Su J, Xu W, et al. Multiple single-nucleotide polymorphism-based risk model for clinical outcomes after allogeneic stem-cell transplantation, especially for acute graft-versus-host disease. Transplantation. 2012;94:1250–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ansari M, Curtis PH, Uppugunduri CRS, Rezgui MA, Nava T, Mlakar V, et al. GSTA1 diplotypes affect busulfan clearance and toxicity in children undergoing allogeneic hematopoietic stem cell transplantation: a multicenter study. Oncotarget. 2017;8:90852–67.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ansari M, Petrykey K, Rezgui MA, Del Vecchio V, Cortyl J, Ralph RO, et al. Genetic susceptibility to hepatic sinusoidal obstruction syndrome in pediatric patients undergoing hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2020;26:920–7.

    Article  CAS  PubMed  Google Scholar 

  13. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15:825–8.

    CAS  PubMed  Google Scholar 

  14. Holtan SG, Khera N, Levine JE, Chai X, Storer B, Liu HD, et al. Late acute graft-versus-host disease: a prospective analysis of clinical outcomes and circulating angiogenic factors. Blood. 2016;128:2350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  PubMed  CAS  Google Scholar 

  16. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20.

  17. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  PubMed  Google Scholar 

  18. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benjamini YH, Controlling Y. the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B: Methodol. 1995;57:289–300.

    Google Scholar 

  20. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  21. Labuda D, Krajinovic M, Richer C, Skoll A, Sinnett H, Yotova V, et al. Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem. 1999;275:84–92.

    Article  CAS  PubMed  Google Scholar 

  22. Huezo-Diaz P, Uppugunduri CR, Tyagi AK, Krajinovic M, Ansari M. Pharmacogenetic aspects of drug metabolizing enzymes in busulfan based conditioning prior to allogenic hematopoietic stem cell transplantation in children. Curr Drug Metab. 2014;15:251–64.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Q, Yan L, Liu Q, Zhang C, Wei L, Hu Q, et al. Exome chip analyses identify genes affecting mortality after HLA-matched unrelated-donor blood and marrow transplantation. Blood. 2018;131:2490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023-.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Magenau J, Runaas L, Reddy P. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol. 2016;173:190–205.

    Article  PubMed  Google Scholar 

  26. Jeanette LDS, Bottero V, Young DB, Shevchenko A, Mercurio F, Verma IM. Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science. 2004;304:1963–7.

    Article  CAS  Google Scholar 

  27. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuba A, Raida L, Mrazek F, Schneiderova P, Kriegova E, Langova K, et al. NFKB1 gene single-nucleotide polymorphisms: implications for graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2020;99:609–18.

    Article  CAS  PubMed  Google Scholar 

  29. Alpay M, Backman LR, Cheng X, Dukel M, Kim WJ, Ai L, et al. Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling. Breast Cancer Res Treatment. 2015;151:75–87.

    Article  CAS  Google Scholar 

  30. Liu CJ, Fu X, Xia M, Zhang Q, Gu Z, Guo AY. miRNASNP-v3: a comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets. Nucleic Acids Res. 2020;49:D1276–81.

  31. Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33:254–63.

    Article  CAS  PubMed  Google Scholar 

  32. Medrano LM, Pascual V, Bodas A, López-Palacios N, Salazar I, Espino-Paisán L, et al. Expression patterns common and unique to ulcerative colitis and celiac disease. Ann Hum Genet. 2019;83:86–94.

    Article  CAS  PubMed  Google Scholar 

  33. Hoppmann N, Graetz C, Paterka M, Poisa-Beiro L, Larochelle C, Hasan M, et al. New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain. 2015;138(Pt 4):902–17.

    Article  PubMed  Google Scholar 

  34. Lundmark A, Davanian H, Båge T, Johannsen G, Koro C, Lundeberg J, et al. Transcriptome analysis reveals mucin 4 to be highly associated with periodontitis and identifies pleckstrin as a link to systemic diseases. Sci Rep. 2015;5:18475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding Y, Kantarci A, Badwey JA, Hasturk H, Malabanan A, Van Dyke TE. Phosphorylation of Pleckstrin increases proinflammatory cytokine secretion by mononuclear phagocytes in diabetes mellitus. J Immunol. 2007;179:647–54.

    Article  CAS  PubMed  Google Scholar 

  36. Hasturk H, Kantarci A, Van Dyke TE. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol. 2012;3:118.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.

    Article  PubMed  Google Scholar 

  38. Pasmant E, Gilbert-Dussardier B, Petit A, de Laval B, Luscan A, Gruber A, et al. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene. 2015;34:631–8.

    Article  CAS  PubMed  Google Scholar 

  39. Olsson L, Castor A, Behrendtz M, Biloglav A, Forestier E, Paulsson K, et al. Deletions of IKZF1 and SPRED1 are associated with poor prognosis in a population-based series of pediatric B-cell precursor acute lymphoblastic leukemia diagnosed between 1992 and 2011. Leukemia. 2014;28:302–10.

    Article  CAS  PubMed  Google Scholar 

  40. Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128:2026–38.

    Article  CAS  PubMed  Google Scholar 

  41. Biedermann BC. Vascular endothelium and graft-versus-host disease. Best Practice Res Clin Haematol. 2008;21:129–38.

    Article  CAS  Google Scholar 

  42. Tichelli A, Gratwohl A. Vascular endothelium as ‘novel’ target of graft-versus-host disease. Best Practice Res Clin Haematol. 2008;21:139–48.

    Article  CAS  Google Scholar 

  43. Cao X-N, Kong Y, Song Y, Shi M-M, Zhao H-Y, Wen Q, et al. Impairment of bone marrow endothelial progenitor cells in acute graft-versus-host disease patients after allotransplant. Br J Haematol. 2018;182:870–86.

    Article  CAS  PubMed  Google Scholar 

  44. Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol. 2008;8:478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leveson-Gower DB, Sega EI, Kalesnikoff J, Florek M, Pan Y, Pierini A, et al. Mast cells suppress murine GVHD in a mechanism independent of CD4+CD25+ regulatory T cells. Blood. 2013;122:3659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishizaki T, Tamiya T, Taniguchi K, Morita R, Kato R, Okamoto F, et al. miR126 positively regulates mast cell proliferation and cytokine production through suppressing Spred1. Genes Cells. 2011;16:803–14.

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki M, Morita R, Hirata Y, Shichita T, Yoshimura A. Spred1, a suppressor of the Ras-ERK pathway, negatively regulates expansion and function of group 2 innate lymphoid cells. J Immunol. 2015;195:1273–81.

    Article  CAS  PubMed  Google Scholar 

  48. Munneke JM, Björklund AT, Mjösberg JM, Garming-Legert K, Bernink JH, Blom B, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood. 2014;124:812–21.

    Article  CAS  PubMed  Google Scholar 

  49. Thomson E, Rappsilber J, Tollervey D. Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. RNA. 2007;13(12):2165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang J, Teramoto T, Qiu C, Wine RN, Gonzalez LE, Baserga SJ, et al. Nop9 recognizes structured and single-stranded RNA elements of preribosomal RNA. RNA. 2020;26(8):1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nudel R, Simpson NH, Baird G, O’Hare A, Conti-Ramsden G, Bolton PF, et al. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes Brain Behav. 2014;13(4):418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Turpeinen H, Ojala PJ, Ojala K, Miettinen M, Volin L, Partanen J. Minor histocompatibility antigens as determinants for graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Int J Immunogenet. 2013;40(6):495–501.

    Article  CAS  PubMed  Google Scholar 

  53. Akatsuka Y, Warren EH, Gooley TA, Brickner AG, Lin M-T, Hansen JA, et al. Disparity for a newly identified minor histocompatibility antigen, HA-8, correlates with acute graft-versus-host disease after haematopoietic stem cell transplantation from an HLA-identical sibling. Br J Haematol. 2003;123:671–5.

    Article  CAS  PubMed  Google Scholar 

  54. Sharma SB, Lin CC, Farrugia MK, McLaughlin SL, Ellis EJ, Brundage KM, et al. MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol Cell Biol. 2014;34:4143–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Reported On Behalf of the Pediatric Disease Working Party of the European Society for Blood and Marrow Transplantation. The authors would like to thank all patients and their parents for the participation in the study, as well as all study collaborators for their valuable contribution.

Funding

This investigation was supported by grants from the Swiss National Science Foundation (Grant No. 153389), CANSEARCH Foundation, AOK Foundation, and Foundation of Charles-Bruneau.

Author information

Authors and Affiliations

Authors

Contributions

M.A., H.B., and M.K. designed the study; D.S. supervised WES analyses; P.S.-O. and P.B. contributed to bioinformatics analyses; Y.T., I.H.B., J.J.B., R.G.M.B., J.H.D., V.L., B.S.K., S.C., M.A., H.B., M.A.R. contributed to patients’ sample and data processing; K.P., J.C., V.D.V., and M.K. executed computational and statistical analysis; T.N., S.J.M., C.R.S.U. contributed to interpretation of results; M.A.R. and M.A. performed the replication analysis; M.K. drafted the manuscript and all authors revised it critically.

Corresponding author

Correspondence to Maja Krajinovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent

Written informed consent was obtained from every patient or parent/legal guardian. The study was conducted in accordance with the Declaration of Helsinki and was approved by Research Ethics Board of SJUHC.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M., Petrykey, K., Rezgui, M.A. et al. Genetic susceptibility to acute graft versus host disease in pediatric patients undergoing HSCT. Bone Marrow Transplant 56, 2697–2704 (2021). https://doi.org/10.1038/s41409-021-01386-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01386-8

Search

Quick links