Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hematopoietic stem cell transplantation reverses white matter injury measured by diffusion-tensor imaging (DTI) in sickle cell disease patients

Abstract

Brain injury in sickle cell disease (SCD) comprises a wide spectrum of neurological damage. Neurocognitive deficits have been described even without established neurological lesions. DTI is a rapid, noninvasive, and non-contrast method that enables detection of normal-appearing white matter lesions not detected by conventional magnetic resonance imaging (MRI). The aim of the study was to evaluate if stem cell transplantation can revert white matter lesions in patients with SCD. Twenty-eight SCD patients were evaluated with MRI and DTI before and after allogeneic hematopoietic stem cell transplantation (HSCT), compared with 26 healthy controls (HC). DTI metrics included fractional anisotropy (FA), mean diffusivity (MD), radial (RD), and axial (AD) diffusivity maps, global efficiency, path length, and clustering coefficients. Compared to HC, SCD patients had a lower FA (p = 0.0086) before HSCT. After HSCT, FA increased and was not different from healthy controls (p = 0.1769). Mean MD, RD, and AD decreased after HSCT (p = 0.0049; p = 0.0029; p = 0.0408, respectively). We confirm previous data of white matter lesions in SCD and present evidence that HSCT promotes recovery of brain injury with potential improvement of brain structural connectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evaluation of diffusion scales.
Fig. 2: Brain network analysis.
Fig. 3: Fractional anysotropy in SCD patients and in healthy controls.
Fig. 4: Diffusivity measures (MD, RD, AD) and network properties (global efficiency, path length and clustering coefficient) in SCD patients.

Similar content being viewed by others

References

  1. Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376:1561–73.

    Article  CAS  PubMed  Google Scholar 

  2. Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017;390:311–23.

    Article  PubMed  Google Scholar 

  3. Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91:288–94.

    CAS  PubMed  Google Scholar 

  4. Ford AL, Ragan DK, Fellah S, Binkley MM, Fields ME, Guilliams KP, et al. Silent infarcts in sickle cell anemia occur in the borderzone region and are associated with low cerebral blood flow. Blood. 2018;132:1714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kassim AA, Galadanci NA, Pruthi S, Debaun MR, How I. How I treat and manage strokes in sickle cell disease. Blood. 2015;125:3401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Debaun MR, Kirkham FJ. Central nervous system complications and management in sickle cell disease. Blood. 2016;127:829–38.

    Article  CAS  PubMed  Google Scholar 

  7. Kassim AA, Pruthi S, Day M, Rodeghier M, Gindville MC, Brodsky MA, et al. Silent cerebral infarcts and cerebral aneurysms are prevalent in adults with sickle cell anemia. Blood. 2016;127:2038–40.

    Article  CAS  PubMed  Google Scholar 

  8. Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Chevret S, Hau I, et al. Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood. 2011;117:1130–40.

    Article  CAS  PubMed  Google Scholar 

  9. Bernaudin F, Verlhac S, Fréard F, Roudot-Thoraval F, Benkerrou M, Thuret I, et al. Multicenter prospective study of children with sickle cell disease: radiographic and psychometric correlation. J Child Neurol. 2000;15:333–43.

    Article  CAS  PubMed  Google Scholar 

  10. Armstrong FD, Thompson RJ, Wang W, Zimmerman R, Pegelow CH, Miller S, et al. Cognitive functioning and brain magnetic resonance imaging in children with sickle Cell disease. Neuropsychology Committee of the Cooperative Study of Sickle Cell Disease. Pediatrics. 1996;97:864–70.

    Article  CAS  PubMed  Google Scholar 

  11. Pegelow CH, Macklin EA, Moser FG, Wang WC, Bello JA, Miller ST, et al. Longitudinal changes in brain magnetic resonance imaging findings in children with sickle cell disease. Blood. 2002;99:3014–8.

    Article  CAS  PubMed  Google Scholar 

  12. Noll RB, Stith L, Gartstein MA, Ris MD, Grueneich R, Vannatta K, et al. Neuropsychological functioning of youths with sickle cell disease: Comparison with non-chronically ill peers. J Pediatr Psychol. 2001;26:69–78.

    Article  CAS  PubMed  Google Scholar 

  13. Estcourt LJ, Fortin PM, Hopewell S, Trivella M, Doree C, Abboud MR. Interventions for preventing silent cerebral infarcts in people with sickle cell disease. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD012389.pub2.

  14. Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Vasile M, Kasbi F, et al. Chronic and acute anemia and extracranial internal carotid stenosis are risk factors for silent cerebral infarcts in sickle cell anemia. Blood. 2015;125:1653–61.

    Article  CAS  PubMed  Google Scholar 

  15. Hulbert ML, Mckinstry RC, Lacey JL, Moran CJ, Panepinto JA, Thompson AA, et al. Silent cerebral infarcts occur despite regular blood transfusion therapy after first strokes in children with sickle cell disease. Blood. 2011;117:772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arnold SD, Bhatia M, Horan J, Krishnamurti L. Haematopoietic stem cell transplantation for sickle cell disease-current practice and new approaches. Br J Haematol. 2016;174:515–25.

    Article  PubMed  Google Scholar 

  17. Simões BP, Pieroni F, Costa T, Barros GN, Darrigo G Jr, Grecco CS, et al. Allogenic bone narrow transplantation in sickle-cell diseases. Rev Assoc Med Bras. 2016;62:16–22.

    PubMed  Google Scholar 

  18. Bolaños-Meade J, Brodsky RA. Blood and marrow transplantation for sickle cell disease: Is less more? Blood Rev. 2014;28:243–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bhatia M, Sheth S. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations. J Blood Med. 2015;6:229–38.

    PubMed  PubMed Central  Google Scholar 

  20. Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, Carreras J, et al. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood. 2017;129:1548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bernaudin F, Verlhac S, De Latour RP, Dalle JH, Brousse V, Petras E, et al. Association of matched sibling donor hematopoietic stem cell transplantation with transcranial doppler velocities in children with sickle cell anemia. JAMA. 2019;321:266–76.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L, et al. Sickle cell disease. Nat Rev Dis Primers. 2018. https://doi.org/10.1038/nrdp.2018.10.

  23. Jordan LC, Juttukonda MR, Kassim AA, DeBaun MR, Davis LT, Pruthi S, et al. Haploidentical bone marrow transplantation improves cerebral hemodynamics in adults with sickle cell disease. Am J Hematol. 2019;94:E155–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Balci A, Karazincir S, Beyoglu Y, Cingiz C, Davran R, Gali E, et al. Quantitative brain diffusion-tensor MRI findings in patients with sickle cell disease. Am J Roentgenol. 2012;198:1167–74.

    Article  Google Scholar 

  25. Green NS, Bhatia M, Griffith EY, Qureshi M, Briamonte C, Savone M, et al. Enhanced long-term brain magnetic resonance imaging evaluation of children with sickle cell disease after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2017;23:670–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–55.

    Article  PubMed  Google Scholar 

  27. Taoka T, Iwasaki S, Sakamoto M, Nakagawa H, Fukusumi A, Myochin K, et al. Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease: evaluation of the “tract of interest” by diffusion tensor tractography. Am J Neuroradiol. 2006;27:1040–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893–906.

    Article  CAS  PubMed  Google Scholar 

  29. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26:132–40.

    Article  PubMed  Google Scholar 

  30. Wheeler-Kingshott AM, Barker GJ, Steens SCA, van Buchem MA. The diffusion of water. In: Tofts P, editor. Quantitative MR of the brain: measuring changes caused by disease. Hoboken, NJ: John Wiley & Sons, Ltd; 2003. p. 203–256.

  31. Irimia A, Wang B, Aylward SR, Prastawa MW, Pace DF, Gerig G, et al. Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction. Neuroimage Clin. 2012;1:1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kassim AA, Sharma D. Hematopoietic stem cell transplantation for sickle cell disease: The changing landscape. Hematol Oncol Stem Cell Ther. 2017;10:259–66.

    Article  PubMed  Google Scholar 

  33. Walters MC, Hardy K, Edwards S, Adamkiewicz T, Barkovich J, Bernaudin F, et al. Pulmonary, gonadal, and central nervous system status after bone marrow transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2010;16:263–72.

    Article  PubMed  Google Scholar 

  34. Kawadler JM, Kirkham FJ, Clayden JD, Hollocks M, Seymour EL, Edey R, et al. White matter damage relates to oxygen saturation in children with sickle cell anemia without silent cerebral infarcts. Stroke. 2015;46:1793–9.

    Article  CAS  PubMed  Google Scholar 

  35. Sun B, Brown RC, Hayes L, Burns TG, Huamani J, Bearden DJ, et al. White matter damage in asymptomatic patients with sickle cell anemia: Screening with diffusion tensor imaging. Am J Neuroradiol. 2012;33:2043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dallas MH, Triplett B, Shook DR, Hartford C, Srinivasan A, Laver J, et al. Long-term outcome and evaluation of organ function in pediatric patients undergoing haploidentical and matched related hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2013;19:820–30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stotesbury H, Kirkham FJ, Kölbel M, Balfour P, Clayden JD, Sahota S, et al. White matter integrity and processing speed in sickle cell anemia. Neurology. 2018;90:e2042–50.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vichinsky EP, Neumayr LD, Gold JI, Weiner MW, Rule RR, Truran D, et al. Neuropsychological dysfunction and neuroimaging abnormalities in neurologically intact adults with sickle cell anemia. JAMA. 2010;303:1823–31.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bhatia M, Jin Z, Baker C, Geyer MB, Radhakrishnan K, Morris E, et al. Reduced toxicity, myeloablative conditioning with BU, fludarabine, alemtuzumab and SCT from sibling donors in children with sickle cell disease. Bone Marrow Transplant. 2014;49:913–20.

    Article  CAS  PubMed  Google Scholar 

  40. Bush AM, Borzage MT, Choi S, Václavu L, Tamrazi B, Nederveen AJ, et al. Determinants of resting cerebral blood flow in sickle cell disease. Am J Hematol. 2016;91:912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernaudin F, Socie G, Kuentz M, Chevret S, Duval M, Bertrand Y, et al. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood. 2007;110:2749–56.

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz RB, Bravo SM, Klufas RA, Hsu L, Barnes PD, Robson CD, et al. Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases. AJR Am J Roentgenol. 1995;165:627–31.

    Article  CAS  PubMed  Google Scholar 

  43. Noè A, Cappelli B, Biffi A, Chiesa R, Frugnoli I, Biral E, et al. High incidence of severe cyclosporine neurotoxicity in children affected by haemoglobinopaties undergoing myeloablative haematopoietic stem cell transplantation: early diagnosis and prompt intervention ameliorates neurological outcome. Ital J Pediatr. 2010;36:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhoo into adulthood. J Neurosci. 2011;31:10937–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the patients and their families, the medical and multidisciplinary bone marrow transplantation team, the blood center group for their support and Hans-Kolb for reviewing this paper. This study was supported by the São Paulo Research Foundation (Center for Cell-Based Research, CTC-CEPID-FAPESP, Process 2013/08.135-2), by INCTC (CNPq Process number 465.539/2014-9) and by the Ribeirão Preto Medical School—University of São Paulo (FMRP-USP)

Author information

Authors and Affiliations

Authors

Contributions

BPS and ACS designed the study; TMC, RDC, and MCO performed data analysis; TMC, LGDJ, CESG, JTBF, JBED, RC, FP, and ABPLS provided protocol support; TMC and RDC wrote the paper; and BPS, ACS, MCO, and CEGS reviewed the paper.

Corresponding author

Correspondence to Thalita Cristina de Mello Costa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, T.C.d.M., Chiari-Correia, R., Salmon, C.E.G. et al. Hematopoietic stem cell transplantation reverses white matter injury measured by diffusion-tensor imaging (DTI) in sickle cell disease patients. Bone Marrow Transplant 56, 2705–2713 (2021). https://doi.org/10.1038/s41409-021-01365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01365-z

Search

Quick links