Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRS-related coagulopathy in BCMA targeted CAR-T therapy: a retrospective analysis in a phase I/II clinical trial

Abstract

Chimeric antigen receptor (CAR) T-cell therapy that targets B-cell maturation antigen (BCMA) has shown promising effects in the treatment of patients with refractory/relapsed multiple myeloma (R/R MM) patients. In this retrospective analysis of phase I/II clinical trial (ChiCTR1800017404), 37 patients with R/R MM received their first BCMA-targeted CAR T-cells following lymphodepletion chemotherapy. The response rate was high (97%), while accompanied by a high incidence of adverse events including coagulation dysfunction. Of 37 patients, all (100%) had cytokine release syndrome (CRS) and 34 (91%) developed at least one abnormal coagulation parameter. The values of coagulation parameters were positively correlated with the severity of CRS as well as with the levels of some cytokines, such as interleukin (IL)-6, IL-10, and interferon (IFN)-γ, etc. Furthermore, levels of the plasma tissue factor (TF), Factor X (FX), Factor XII (FXII), and P-selectin also showed a positive correlation with severity of CRS as well as some specific cytokines, which indicates that these factors are likely to play important roles in CRS-related coagulopathy. Our study suggests that there exists relationship in some extent between coagulation disorder and CRS. Moreover, coagulation dysfunction can be managed with daily monitoring and early intervention despite high incidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The values of coagulation parameters at different time points.
Fig. 2: The changed values of coagulation parameters in patients with mild or severe CRS.
Fig. 3: The correlation between plasma coagulation factors, P-selectin and CRS.
Fig. 4: Schematic diagram of the relationship between CRS and coagulopathy.

Similar content being viewed by others

References

  1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.

    Article  CAS  PubMed  Google Scholar 

  2. Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol. 2011;8:479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldschmidt H, Ashcroft J, Szabo Z, Garderet L. Navigating the treatment landscape in multiple myeloma: which combinations to use and when? Ann Hematol. 2019;98:1–18.

    Article  CAS  PubMed  Google Scholar 

  4. Chim C, Kumar SK, Orlowski R, Cook G, Richardson P, Gertz M, et al. Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond. Leukemia. 2018;32:252–62.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar S. Treatment of newly diagnosed multiple myeloma in transplant-eligible patients. Curr Hematol Malig Rep. 2011;6:104–12.

    Article  PubMed  Google Scholar 

  6. Nijhof IS, van de Donk NW, Zweegman S, Lokhorst H. Current and new therapeutic strategies for relapsed and refractory multiple myeloma: an update. Drugs. 2018;78:19–37.

    Article  CAS  PubMed  Google Scholar 

  7. Sonneveld P. the American Society of Hematology Education Program Book. Management of multiple myeloma in the relapsed/refractory patient. Hematol Am Soc Hematol Educ Program. 2017;2017:508–17.

    Article  Google Scholar 

  8. Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson PG, Crowley J, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26:149–57.

    Article  CAS  PubMed  Google Scholar 

  9. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  PubMed  Google Scholar 

  11. Turtle CJ, Hanafi L-A, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR–T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126:2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra225–224ra225.

    Article  CAS  Google Scholar 

  14. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turtle CJ, Hanafi L-A, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells. Sci Transl Med. 2016;8:355ra116–355ra116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129:3322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl J Med. 2017;377:2545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abramson JS, Gordon LI, Palomba ML, Lunning MA, Arnason JE, Forero-Torres A et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J Clin Oncol. 2018;36:7505.

    Article  Google Scholar 

  21. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380:45–56.

    Article  CAS  PubMed  Google Scholar 

  22. Porter DL, Hwang W-T, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139–303ra139.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hay KA, Hanafi L-A, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood. 2017;130:2295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu Y, Wu Z, Luo Y, Shi J, Yu J, Pu C, et al. Potent anti-leukemia activities of chimeric antigen receptor–Modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res. 2017;23:3297–306.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang H, Liu L, Guo T, Wu Y, Ai L, Deng J, et al. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Ann Hematol. 2019;98:1721–32.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Qi K, Cheng H, Cao J, Shi M, Qiao J, et al. Coagulation disorders after chimeric antigen receptor T cell therapy: analysis of 100 patients with relapsed and refractory hematologic malignancies. Biol Blood Marrow Transpl. 2019;26:865–75.

    Article  CAS  Google Scholar 

  27. Stefano VD, Za T, Rossi E. Venous thromboembolism in multiple myeloma. Semin Thrombosis Hemost. 2014;40:338–47.

    Article  CAS  Google Scholar 

  28. Kwaan HC. Hyperviscosity in plasma cell dyscrasias. Clin Hemorheol Microcirc. 2013;55:75–83.

    Article  PubMed  CAS  Google Scholar 

  29. Robak M, Treliński J, Chojnowski K. Hemostatic changes after 1 month of thalidomide and dexamethasone therapy in patients with multiple myeloma. Med Oncol. 2012;29:3574–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao W-H, Liu J, Wang B-Y, Chen Y-X, Cao X-M, Yang Y, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;11:1–8.

    Article  CAS  Google Scholar 

  31. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129:2210–21.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu J, Chen L-J, Yang S-S, Sun Y, Wu W, Liu Y-F, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 2019;116:9543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ, et al. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128:1688–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Disco. 2016;6:664–79.

    Article  CAS  Google Scholar 

  37. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24:739–48.

    Article  CAS  PubMed  Google Scholar 

  38. Giavridis T, van der Stegen SJ, Eyquem J, Hamieh M, Piersigilli A, Sadelain MCAR. T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jensen T, Kierulf P, Sandset PM, Klingenberg O, Joø GB, Godal HC, et al. Fibrinogen and fibrin induce synthesis of proinflammatory cytokines from isolated peripheral blood mononuclear cells. Thrombosis Haemost. 2007;97:822–9.

    Article  CAS  Google Scholar 

  40. McLean K, Schirm S, Johns A, Morser J, Light DR. FXa-induced responses in vascular wall cells are PAR-mediated and inhibited by ZK-807834. Thromb Res. 2001;103:281–97.

    Article  CAS  PubMed  Google Scholar 

  41. Ollivier V, Chabbat J, Herbert J, Hakim J, De Prost D. Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves thrombin and factor Xa. Arteriosclerosis, Thrombosis Vasc Biol. 2000;20:1374–81.

    Article  CAS  Google Scholar 

  42. Camerer E, Huang W, Coughlin SR. Tissue factor-and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA. 2000;97:5255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost. 2015;114:449–58.

    Article  PubMed  Google Scholar 

  44. Eisenreich A, Bogdanov VY, Zakrzewicz A, Pries A, Antoniak S, Poller W, et al. Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells. Circ Res. 2009;104:589–99.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Wang J, Yao Y, Yuan W, Kong M, Lin Y, et al. CRP regulates the expression and activity of tissue factor as well as tissue factor pathway inhibitor via NF-kappaB and ERK 1/2 MAPK pathway. FEBS Lett. 2009;583:2811–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the study participants, especially the patients and their families. This work is supported by National Natural Science Foundation of China (81730008, 81770201, 81870153), the Key Project of Science and Technology Department of Zhejiang Province (2019C03016, 2018C03016-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxian Hu or He Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, M., Yu, Q., Teng, X. et al. CRS-related coagulopathy in BCMA targeted CAR-T therapy: a retrospective analysis in a phase I/II clinical trial. Bone Marrow Transplant 56, 1642–1650 (2021). https://doi.org/10.1038/s41409-021-01226-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01226-9

This article is cited by

Search

Quick links