Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pre-emptive rituximab treatment for Epstein–Barr virus reactivation after allogeneic hematopoietic stem cell transplantation is a worthwhile strategy in high-risk recipients: a comparative study for immune recovery and clinical outcomes

Abstract

This retrospective study evaluated the impact of a pre-emptive rituximab (RTX) strategy for Epstein–Barr virus (EBV) reactivation on immune recovery and outcomes of 219 high-risk recipients undergoing allogeneic stem cell transplantation (allo-SCT) for hematological malignancies or bone marrow failure. One-hundred and seven patients received pre-emptive RTX for EBV reactivation (RTX group) and 112 did not (control group). The median onset time of EBV reactivation was 49 days (range, 14–561), including five patients who developed post-transplant lymphoproliferative disorder (EBV-PTLD). RTX and control groups were pair-matched to assess the impact of RTX on all endpoints. In RTX patients, CD19 + B cells were significantly decreased until 1-year post-transplant, so were immunoglobulin levels. Twenty-one patients (17%) developed RTX-related neutropenia. There was, in the RTX group, a trend towards a lower cumulative incidence of chronic GvHD (P = 0.059). Overall survival, progression-free survival, non-relapse mortality, relapse incidence, and incidence of overall infections at 2 years following allo-SCT were comparable in the two groups. We conclude that pre-emptive RTX, despite inducing a delayed B-cell reconstitution and a high risk of RTX-related neutropenia, may be considered as a worthwhile treatment, given the absence of negative impact on post allo-SCT outcomes and a low incidence of EBV-PTLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Curtis RE, Travis LB, Rowlings PA, Socie G, Kingma DW, Banks PM, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94:2208–16.

    CAS  PubMed  Google Scholar 

  2. Patriarca F, Medeot M, Isola M, Battista ML, Sperotto A, Pipan C, et al. Prognostic factors and outcome of Epstein-Barr virus DNAemia in high-risk recipients of allogeneic stem cell transplantation treated with preemptive rituximab. Transpl Infect Dis. 2013;15:259–67. https://doi.org/10.1111/tid.12061.

    Article  CAS  PubMed  Google Scholar 

  3. Ocheni S, Kroeger N, Zabelina T, Sobottka I, Ayuk F, Wolschke C, et al. EBV reactivation and post transplant lymphoproliferative disorders following allogeneic SCT. Bone Marrow Transpl. 2008;42:181–6. https://doi.org/10.1038/bmt.2008.150.

    Article  CAS  Google Scholar 

  4. Orazi A, Hromas RA, Neiman RS, Greiner TC, Lee CH, Rubin L, et al. Posttransplantation lymphoproliferative disorders in bone marrow transplant recipients are aggressive diseases with a high incidence of adverse histologic and immunobiologic features. Am J Clin Pathol. 1997;107:419–29.

    Article  CAS  Google Scholar 

  5. Paya CV, Fung JJ, Nalesnik MA, Kieff E, Green M, Gores G, et al. Epstein-Barr virus-induced posttransplant lymphoproliferative disorders. ASTS/ASTP EBV-PTLD Task Force and The Mayo Clinic Organized International Consensus Development Meeting. Transplantation. 1999;68:1517–25.

    Article  CAS  Google Scholar 

  6. Styczynski J, van der Velden W, Fox CP, Engelhard D, de la Camara R, Cordonnier C, et al. Management of Epstein-Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: Sixth European Conference on Infections in Leukemia (ECIL-6) guidelines. Haematologica. 2016;101:803–11. https://doi.org/10.3324/haematol.2016.144428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Styczynski J, Gil L, Tridello G, Ljungman P, Donnelly JP, van der Velden W, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2013;57:794–802. https://doi.org/10.1093/cid/cit391.

    Article  CAS  PubMed  Google Scholar 

  8. Heslop HE. How I treat EBV lymphoproliferation. Blood. 2009;114:4002–8. https://doi.org/10.1182/blood-2009-07-143545. e-pub ahead of print 2009/09/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xuan L, Jiang X, Sun J, Zhang Y, Huang F, Fan Z, et al. Spectrum of Epstein-Barr virus-associated diseases in recipients of allogeneic hematopoietic stem cell transplantation. Transplantation. 2013;96:560–6. https://doi.org/10.1097/TP.0b013e31829d38af.

    Article  CAS  PubMed  Google Scholar 

  10. Styczynski J, Einsele H, Gil L, Ljungman P. Outcome of treatment of Epstein-Barr virus-related post-transplant lymphoproliferative disorder in hematopoietic stem cell recipients: a comprehensive review of reported cases. Transpl Infect Dis. 2009;11:383–92. https://doi.org/10.1111/j.1399-3062.2009.00411.x.

    Article  CAS  PubMed  Google Scholar 

  11. Sanz J, Arango M, Senent L, Jarque I, Montesinos P, Sempere A, et al. EBV-associated post-transplant lymphoproliferative disorder after umbilical cord blood transplantation in adults with hematological diseases. Bone Marrow Transpl. 2014;49:397–402. https://doi.org/10.1038/bmt.2013.190.

    Article  CAS  Google Scholar 

  12. Worth A, Conyers R, Cohen J, Jagani M, Chiesa R, Rao K, et al. Pre-emptive rituximab based on viraemia and T cell reconstitution: a highly effective strategy for the prevention of Epstein-Barr virus-associated lymphoproliferative disease following stem cell transplantation. Br J Haematol. 2011;155:377–85. https://doi.org/10.1111/j.1365-2141.2011.08855.x.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Cadenas I, Castillo N, Martino R, Barba P, Esquirol A, Novelli S, et al. Impact of Epstein Barr virus-related complications after high-risk allo-SCT in the era of pre-emptive rituximab. Bone Marrow Transpl. 2015;50:579–84. https://doi.org/10.1038/bmt.2014.298.

    Article  CAS  Google Scholar 

  14. D’Aveni M, Aissi-Rothe L, Venard V, Salmon A, Falenga A, Decot V, et al. The clinical value of concomitant Epstein Barr virus (EBV)-DNA load and specific immune reconstitution monitoring after allogeneic hematopoietic stem cell transplantation. Transpl Immunol. 2011;24:224–32. https://doi.org/10.1016/j.trim.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  15. Nitta E, Izutsu K, Sato T, Ota Y, Takeuchi K, Kamijo A, et al. A high incidence of late-onset neutropenia following rituximab-containing chemotherapy as a primary treatment of CD20-positive B-cell lymphoma: a single-institution study. Ann Oncol. 2007;18:364–9. https://doi.org/10.1093/annonc/mdl393. e-pub ahead of print 2006/11/03.

    Article  CAS  PubMed  Google Scholar 

  16. Lai GG, Lim ST, Tao M, Chan A, Li H, Quek R. Late-onset neutropenia following RCHOP chemotherapy in diffuse large B-cell lymphoma. Am J Hematol. 2009;84:414–7. https://doi.org/10.1002/ajh.21420. e-pub ahead of print 2009/05/06.

    Article  CAS  PubMed  Google Scholar 

  17. Blaes AH, Cao Q, Wagner JE, Young JA, Weisdorf DJ, Brunstein CG. Monitoring and preemptive rituximab therapy for Epstein-Barr virus reactivation after antithymocyte globulin containing nonmyeloablative conditioning for umbilical cord blood transplantation. Biol Blood Marrow Transpl. 2010;16:287–91. https://doi.org/10.1016/j.bbmt.2009.10.008.

    Article  CAS  Google Scholar 

  18. Coppoletta S, Tedone E, Galano B, Soracco M, Raiola AM, Lamparelli T, et al. Rituximab treatment for Epstein-Barr virus DNAemia after alternative-donor hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2011;17:901–7. https://doi.org/10.1016/j.bbmt.2010.10.003.

    Article  CAS  Google Scholar 

  19. Petropoulou AD, Porcher R, Peffault de Latour R, Xhaard A, Weisdorf D, Ribaud P, et al. Increased infection rate after preemptive rituximab treatment for Epstein-Barr virus reactivation after allogeneic hematopoietic stem-cell transplantation. Transplantation. 2012;94:879–83. https://doi.org/10.1097/TP.0b013e3182664042. e-pub ahead of print 2012/09/25.

    Article  CAS  PubMed  Google Scholar 

  20. Storek J, Dawson MA, Storer B, Stevens-Ayers T, Maloney DG, Marr KA, et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood. 2001;97:3380–9. e-pub ahead of print 2001/05/23.

    Article  CAS  Google Scholar 

  21. Storek J, Ferrara S, Ku N, Giorgi JV, Champlin RE, Saxon A. B cell reconstitution after human bone marrow transplantation: recapitulation of ontogeny? Bone Marrow Transpl. 1993;12:387–98. e-pub ahead of print 1993/10/01.

    CAS  Google Scholar 

  22. Small TN, Keever CA, Weiner-Fedus S, Heller G, O’Reilly RJ, Flomenberg N. B-cell differentiation following autologous, conventional, or T-cell depleted bone marrow transplantation: a recapitulation of normal B-cell ontogeny. Blood. 1990;76:1647–56. e-pub ahead of print 1990/10/15.

    Article  CAS  Google Scholar 

  23. Burns DM, Tierney R, Shannon-Lowe C, Croudace J, Inman C, Abbotts B, et al. Memory B-cell reconstitution following allogeneic hematopoietic stem cell transplantation is an EBV-associated transformation event. Blood. 2015;126:2665–75. https://doi.org/10.1182/blood-2015-08-665000. e-pub ahead of print 2015/10/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marie-Cardine A, Divay F, Dutot I, Green A, Perdrix A, Boyer O, et al. Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. Clin Immunol. 2008;127:14–25. https://doi.org/10.1016/j.clim.2007.11.013. e-pub ahead of print 2008/01/15.

    Article  CAS  PubMed  Google Scholar 

  25. Storek J, Wells D, Dawson MA, Storer B, Maloney DG. Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. Blood. 2001;98:489–91. e-pub ahead of print 2001/07/04.

    Article  CAS  Google Scholar 

  26. Bosch M, Khan FM, Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol. 2012;19:324–35. https://doi.org/10.1097/MOH.0b013e328353bc7d. e-pub ahead of print 2012/04/21.

    Article  PubMed  Google Scholar 

  27. Kalampokis I, Yoshizaki A, Tedder TF. IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther. 2013;15(Suppl 1):S1. https://doi.org/10.1186/ar3907. e-pub ahead of print 2013/04/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Masson A, Socie G, Bagot M, Bensussan A, Bouaziz JD. Deficient regulatory B cells in human chronic graft-versus-host disease. Oncoimmunology. 2015;4:e1016707 https://doi.org/10.1080/2162402X.2015.1016707. e-pub ahead of print 2015/07/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Masson A, Bouaziz JD, Le Buanec H, Robin M, O’Meara A, Parquet N, et al. CD24(hi)CD27(+) and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood. 2015;125:1830–9. https://doi.org/10.1182/blood-2014-09-599159. e-pub ahead of print 2015/01/22.

    Article  CAS  PubMed  Google Scholar 

  30. Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K, et al. Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood. 2013;121:3274–83. https://doi.org/10.1182/blood-2012-11-465658. e-pub ahead of print 2013/02/21.

    Article  CAS  PubMed  Google Scholar 

  31. Khoder A, Sarvaria A, Alsuliman A, Chew C, Sekine T, Cooper N, et al. Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD. Blood. 2014;124:2034–45. https://doi.org/10.1182/blood-2014-04-571125. e-pub ahead of print 2014/07/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeiser R, Sarantopoulos S, Blazar BR. B-cell targeting in chronic graft-versus-host disease. Blood. 2018;131:1399–405. https://doi.org/10.1182/blood-2017-11-784017. e-pub ahead of print 2018/02/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnston HF, Xu Y, Racine JJ, Cassady K, Ni X, Wu T, et al. Administration of anti-CD20 mAb is highly effective in preventing but ineffective in treating chronic graft-versus-host disease while preserving strong graft-versus-leukemia effects. Biol Blood Marrow Transpl. 2014;20:1089–103. https://doi.org/10.1016/j.bbmt.2014.04.028. e-pub ahead of print 2014/05/07.

    Article  CAS  Google Scholar 

  34. Malard F, Labopin M, Yakoub-Agha I, Chantepie S, Guillaume T, Blaise D, et al. Rituximab-based first-line treatment of cGVHD after allogeneic SCT: results of a phase 2 study. Blood. 2017;130:2186–95. https://doi.org/10.1182/blood-2017-05-786137. e-pub ahead of print 2017/09/03.

    Article  CAS  PubMed  Google Scholar 

  35. Cutler C, Miklos D, Kim HT, Treister N, Woo SB, Bienfang D, et al. Rituximab for steroid-refractory chronic graft-versus-host disease. Blood. 2006;108:756–62. https://doi.org/10.1182/blood-2006-01-0233. e-pub ahead of print 2006/03/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flynn R, Allen JL, Luznik L, MacDonald KP, Paz K, Alexander KA, et al. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood. 2015;125:4085–94. https://doi.org/10.1182/blood-2014-08-595470. e-pub ahead of print 2015/04/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dubovsky JA, Flynn R, Du J, Harrington BK, Zhong Y, Kaffenberger B, et al. Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. J Clin Invest. 2014;124:4867–76. https://doi.org/10.1172/JCI75328. e-pub ahead of print 2014/10/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Forcade E, Paz K, Flynn R, Griesenauer B, Amet T, Li W, et al. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition. JCI Insight. 2017;2. https://doi.org/10.1172/jci.insight.92111. e-pub ahead of print 2017/06/15.

  39. Young JS, Wu T, Chen Y, Zhao D, Liu H, Yi T, et al. Donor B cells in transplants augment clonal expansion and survival of pathogenic CD4+ T cells that mediate autoimmune-like chronic graft-versus-host disease. J Immunol. 2012;189:222–33. https://doi.org/10.4049/jimmunol.1200677. e-pub ahead of print 2012/06/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mikulska M, Lanini S, Gudiol C, Drgona L, Ippolito G, Fernandez-Ruiz M, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52). Clin Microbiol Infect. 2018;24(Suppl 2):S71–82. https://doi.org/10.1016/j.cmi.2018.02.003. e-pub ahead of print 2018/02/16.

    Article  CAS  PubMed  Google Scholar 

  41. Gillissen MA, Kedde M, Jong G, Moiset G, Yasuda E, Levie SE, et al. AML-specific cytotoxic antibodies in patients with durable graft-versus-leukemia responses. Blood. 2018;131:131–43. https://doi.org/10.1182/blood-2017-02-768762. e-pub ahead of print 2017/10/25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Association for Training, Education and Research in Hematology, Immunology, and Transplantation for the generous and continuous support to the research work. This work was supported by a grant from IRGHET (International Research Group on HEmatopoietic cells Transplantation). We also thank the clinical teams who provided care for the study patients, the members of the tumor bank at Saint-Antoine Hospital and the members of the study team at the Center de Recherche Saint-Antoine for their dedication to this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed on the manuscript have contributed substantially to this work: NS, ML, and EB designed the study, NS and AB collected the data, NS, FM, GB, RD, FG, AR, MM, and EB recruited the patients, ML performed the statistical analysis and NS, IB, and BG contributed the flow cytometry data. NS prepared the manuscript and figures for publication. All authors analyzed the data, reviewed the manuscript, and agreed to its submission for publication.

Corresponding author

Correspondence to Eolia Brissot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stocker, N., Labopin, M., Boussen, I. et al. Pre-emptive rituximab treatment for Epstein–Barr virus reactivation after allogeneic hematopoietic stem cell transplantation is a worthwhile strategy in high-risk recipients: a comparative study for immune recovery and clinical outcomes. Bone Marrow Transplant 55, 586–594 (2020). https://doi.org/10.1038/s41409-019-0699-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0699-6

This article is cited by

Search

Quick links