Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevention and treatment of relapse after stem cell transplantation by cellular therapies

Abstract

Despite recent advances in reducing therapy-related mortality after allogeneic stem cell transplantation (alloSCT) relapse remains the major cause of treatment failure and little progress has been achieved in the last decades. At the 3rd International Workshop on Biology, Prevention, and Treatment of Relapse held in Hamburg/Germany in November 2016 international experts presented and discussed recent developments in the field. Here, the potential of cellular therapies including unspecific and specific T cells, genetically modified T cells, CAR-T cells, NK-cells, and second allografting in prevention and treatment of relapse after alloSCT are summarized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Falkenburg JH, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol. 2015;9:1894–903. https://doi.org/10.1016/j.molonc.2015.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller JS, Warren EH, van den Brink MR, Ritz J, Shlomchik WD, Murphy WJ, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on the biology underlying recurrence of malignant disease following allogeneic HSCT: graft-versus-tumor/leukemia reaction. Biol Blood Marrow Transplant. 2010;16:565–86. https://doi.org/10.1016/j.bbmt.2010.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76. https://doi.org/10.1146/annurev.immunol.21.120601.141107

    Article  CAS  PubMed  Google Scholar 

  4. Griffioen M, van Bergen CA, Falkenburg JH. Autosomal minor histocompatibility antigens: how genetic variants create diversity in immune targets. Front Immunol. 2016;7:100 https://doi.org/10.3389/fimmu.2016.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hassan C, Kester MG, de Ru AH, Hombrink P, Drijfhout JW, Nijveen H, et al. The human leukocyte antigen-presented ligandome of B lymphocytes. Mol Cell Proteom. 2013;12:1829–43. https://doi.org/10.1074/mcp.M112.024810

    Article  CAS  Google Scholar 

  6. Reddy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JL. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med. 2005;11:1244–9. https://doi.org/10.1038/nm1309

    Article  CAS  PubMed  Google Scholar 

  7. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61. https://doi.org/10.1016/S0140-6736(09)60237-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yun HD, Waller EK. Finding the sweet spot for donor lymphocyte infusions. Biol Blood Marrow Transplant. 2013;19:507–8. https://doi.org/10.1016/j.bbmt.2013.02.005

    Article  PubMed  Google Scholar 

  9. Eefting M, Halkes CJ, de Wreede LC, van Pelt CM, Kersting S, Marijt EW, et al. Myeloablative T cell-depleted alloSCT with early sequential prophylactic donor lymphocyte infusion is an efficient and safe post-remission treatment for adult ALL. Bone Marrow Transplant. 2014;49:287–91. https://doi.org/10.1038/bmt.2013.111

    Article  CAS  PubMed  Google Scholar 

  10. Saad A, Lamb LS. Ex vivo T-cell depletion in allogeneic hematopoietic stem cell transplant: past, present and future. Bone Marrow Transplant. 2017;52:1241–8.. https://doi.org/10.1038/bmt.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robinson TM, O’Donnell PV, Fuchs EJ, Luznik L. Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Semin Hematol. 2016;53:90–97. https://doi.org/10.1053/j.seminhematol.2016.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mielcarek M, Kirkorian AY, Hackman RC, Price J, Storer BE, Wood BL, et al. Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation. Transplantation. 2014;98:563–8. https://doi.org/10.1097/TP.0000000000000097

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Bergen CA, van Luxemburg-Heijs SA, de Wreede LC, Eefting M, von dem Borne PA, van Balen P, et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest. 2017;127:517–29. https://doi.org/10.1172/JCI86175

    Article  PubMed  PubMed Central  Google Scholar 

  14. van Loenen MM, de Boer R, van Liempt E, Meij P, Jedema I, Falkenburg JH, et al. A Good Manufacturing Practice procedure to engineer donor virus-specific T cells into potent anti-leukemic effector cells. Haematologica. 2014;99:759–68. https://doi.org/10.3324/haematol.2013.093690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falkenburg JH, Wafelman AR, Joosten P, Smit WM, van Bergen CA, Bongaerts R, et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood. 1999;94:1201–8.

    CAS  PubMed  Google Scholar 

  16. Marijt E, Wafelman A, van der Hoorn M, van Bergen C, Bongaerts R, van Luxemburg-Heijs S, et al. Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica. 2007;92:72–80.

    Article  Google Scholar 

  17. Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK, Loeb KR, et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115:3869–78. https://doi.org/10.1182/blood-2009-10-248997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meij P, Jedema I, van der Hoorn MA, Bongaerts R, Cox L, Wafelman AR, et al. Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica. 2012;97:1205–8. https://doi.org/10.3324/haematol.2011.053371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oostvogels R, Kneppers E, Minnema MC, Doorn RC, Franssen LE, Aarts T, et al. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplant. 2017;52:228–37. https://doi.org/10.1038/bmt.2016.250

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13. https://doi.org/10.1056/NEJMoa020177

    Article  CAS  PubMed  Google Scholar 

  21. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432–3. https://doi.org/10.1126/science.342.6165.1432

    Article  CAS  PubMed  Google Scholar 

  22. Johnson LA, Heemskerk B, Powell DJ Jr., Cohen CJ, Morgan RA, Dudley ME, et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol. 2006;177:6548–59.

    Article  CAS  Google Scholar 

  23. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535–46. https://doi.org/10.1182/blood-2009-03-211714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9. https://doi.org/10.1126/science.1129003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24. https://doi.org/10.1200/JCO.2010.32.2537

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leisegang M, Kammertoens T, Uckert W, Blankenstein T. Targeting human melanoma neoantigens by T cell receptor gene therapy. J Clin Invest. 2016;126:854–8. https://doi.org/10.1172/JCI83465

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. 1997;276:1719–24.

    Article  CAS  Google Scholar 

  28. Bonini C, Grez M, Traversari C, Ciceri F, Marktel S, Ferrari G, et al. Safety of retroviral gene marking with a truncated NGF receptor. Nat Med. 2003;9:367–9. https://doi.org/10.1038/nm0403-367

    Article  CAS  PubMed  Google Scholar 

  29. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10:489–500. https://doi.org/10.1016/S1470-2045(09)70074-9

    Article  PubMed  Google Scholar 

  30. Oliveira G, Ruggiero E, Stanghellini MT, Cieri N, D’Agostino M, Fronza R, et al. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Sci Transl Med. 2015;7:317ra198 https://doi.org/10.1126/scitranslmed.aac8265

    Article  CAS  PubMed  Google Scholar 

  31. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17. https://doi.org/10.1056/NEJMoa1407222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+composition in adult B cell ALL patients. J Clin Invest. 2016;126:2123–38. https://doi.org/10.1172/JCI85309

    Article  PubMed  PubMed Central  Google Scholar 

  33. Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+and CD4+CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8:355ra116 https://doi.org/10.1126/scitranslmed.aaf8621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139 https://doi.org/10.1126/scitranslmed.aac5415

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28. https://doi.org/10.1016/S0140-6736(14)61403-3

    Article  CAS  PubMed  Google Scholar 

  36. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16:565–70. 561p following570. https://doi.org/10.1038/nm.2128

    Article  CAS  PubMed  Google Scholar 

  37. van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R, et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci USA. 2010;107:10972–7. https://doi.org/10.1073/pnas.1005802107

    Article  CAS  PubMed  Google Scholar 

  38. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 2006;66:8878–86. https://doi.org/10.1158/0008-5472.CAN-06-1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H, et al. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res. 2009;69:9003–11. https://doi.org/10.1158/0008-5472.CAN-09-1450

    Article  CAS  PubMed  Google Scholar 

  40. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18:807–15. https://doi.org/10.1038/nm.2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mastaglio S, Genovese P, Magnani Z, Ruggiero E, Landoni E, Camisa B, et al. NY-ESO-1 TCR single edited central memory and memory stem T cells to treat multiple myeloma without inducing GvHD. Blood. 2017;130:606–18. https://doi.org/10.1182/blood-2016-08-732636

    Article  CAS  PubMed  Google Scholar 

  42. Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017; 9. https://doi.org/10.1126/scitranslmed.aaj2013

  43. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–7. https://doi.org/10.1038/nature21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348:74–80. https://doi.org/10.1126/science.aaa6204

    Article  CAS  PubMed  Google Scholar 

  45. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  Google Scholar 

  46. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin Cancer Res. 2017;23:2255–66. https://doi.org/10.1158/1078-0432.CCR-16-1300

    Article  CAS  PubMed  Google Scholar 

  47. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA. 2015;112:10437–42. https://doi.org/10.1073/pnas.1512503112

    Article  CAS  PubMed  Google Scholar 

  48. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119:4133–41. https://doi.org/10.1182/blood-2011-12-400044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res. 2015;21:2278–88. https://doi.org/10.1158/1078-0432.CCR-14-2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, et al. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med. 2015;7:273ra213 https://doi.org/10.1126/scitranslmed.3010314

    Article  CAS  Google Scholar 

  51. Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med. 2017;23:18–27. https://doi.org/10.1038/nm.4241

    Article  CAS  PubMed  Google Scholar 

  52. Bowers JS, Nelson MH, Majchrzak K, Bailey SR, Rohrer B, Kaiser AD, et al. Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. JCI Insight. 2017;2:e90772 https://doi.org/10.1172/jci.insight.90772

    Article  PubMed  PubMed Central  Google Scholar 

  53. Riddell SR, Jensen MC, June CH. Chimeric antigen receptor--modified T cells: clinical translation in stem cell transplantation and beyond. Biol Blood Marrow Transplant. 2013;19:S2–5. https://doi.org/10.1016/j.bbmt.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  54. Porter D, Frey N, Melenhorst JJ, Hwang WT, Lacey SF, Shaw P, et al. Randomized, phase II dose optimization study of chimeric antigen receptor (CAR) modified T cells directed against CD19 in patients (pts) with relapsed, refractory (R/R) CLL. J Clin Oncol. 2016;34:3009a.

    Article  Google Scholar 

  55. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RPT, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2014;33:540–9. https://doi.org/10.1200/jco.2014.56.2025

    Article  PubMed  PubMed Central  Google Scholar 

  56. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra225 https://doi.org/10.1126/scitranslmed.3008226

    Article  CAS  Google Scholar 

  57. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2014;385:517–28.

    Article  Google Scholar 

  58. Park J, Riviere I, wang X, Stefanski J, He Q, Ojeda O, et al. Phase I TRIAL OF AUTOLOgous CD19-targeted CAR-modified T cells as consolidation after purine analog-based first-line therapy in patients with previously untreated CLL. Blood. 2013;122:874a.

    Google Scholar 

  59. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013;122:4129–39. https://doi.org/10.1182/blood-2013-08-519413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maude S, Frey N, Shaw P, Aplenc R, Barrett DM, Bunin NJ, et al. Sustained remissions with chimeric antigen receptor T cells for leukemia. New Engl J Med. 2014;371:1507–17.

    Article  Google Scholar 

  61. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73 https://doi.org/10.1126/scitranslmed.3002842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33. https://doi.org/10.1056/NEJMoa1103849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grupp S, Maude SL, Shaw PA, Aplenc R, Barrett D, Callahan C, et al. Durable remissions in children with relapsed/refractory ALL treated with T cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood. 2015;126:681a.

    Google Scholar 

  65. Park J, Riviere I, Wang X, Bernal Y, Purdon T, Halton E, et al. Implications of minimal residual disease negative complete remission (MRD-CR) and allogeneic stem cell transplant on safety and clinical outcome of CD19-targeted 19-28z CAR modified T cells in adult patients with relapsed, refractory B-cell ALL. Blood. 2015;126:682a.

    Google Scholar 

  66. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127:3321–30. https://doi.org/10.1182/blood-2016-04-703751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor t-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–79. https://doi.org/10.1158/2159-8290.cd-16-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7. https://doi.org/10.1182/blood-2004-07-2974

    Article  CAS  PubMed  Google Scholar 

  69. Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014;123:3855–63. https://doi.org/10.1182/blood-2013-10-532531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Imamura M, Shook D, Kamiya T, Shimasaki N, Chai SM, Coustan-Smith E, et al. Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood. 2014;124:1081–8. https://doi.org/10.1182/blood-2014-02-556837

    Article  CAS  PubMed  Google Scholar 

  71. Wendt K, Wilk E, Buyny S, Schmidt RE, Jacobs R. Interleukin-21 differentially affects human natural killer cell subsets. Immunology. 2007;122:486–95. https://doi.org/10.1111/j.1365-2567.2007.02675.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE. 2012;7:e30264 https://doi.org/10.1371/journal.pone.0030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ciurea SO, Schafer JR, Bassett R, Denman CJ, Cao K, Willis D, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130:1857–68. https://doi.org/10.1182/blood-2017-05-785659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33:74–82. https://doi.org/10.1200/JCO.2014.57.3329

    Article  CAS  PubMed  Google Scholar 

  75. Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity. 2015;42:443–56. https://doi.org/10.1016/j.immuni.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cichocki F, Cooley S, Davis Z, DeFor TE, Schlums H, Zhang B, et al. CD56dimCD57+NKG2C+NK cell expansion is associated with reduced leukemia relapse after reduced intensity HCT. Leukemia. 2016;30:456–63. https://doi.org/10.1038/leu.2015.260

    Article  CAS  PubMed  Google Scholar 

  77. Cichocki F, Valamehr B, Bjordahl R, Zhang B, Rezner B, Rogers P, et al. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res. 2017;77:5664–75. https://doi.org/10.1158/0008-5472.CAN-17-0799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gleason MK, Ross JA, Warlick ED, Lund TC, Verneris MR, Wiernik A, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+targets. Blood. 2014;123:3016–26. https://doi.org/10.1182/blood-2013-10-533398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, et al. IL15 Trispecific Killer Engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22:3440–50. https://doi.org/10.1158/1078-0432.CCR-15-2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Klingemann H. Are natural killer cells superior CAR drivers? Oncoimmunology. 2014;3:e28147 https://doi.org/10.4161/onci.28147

    Article  PubMed  PubMed Central  Google Scholar 

  81. Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, et al. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 2015;6:21 https://doi.org/10.3389/fphar.2015.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Porter DL, Alyea EP, Antin JH, DeLima M, Estey E, Falkenburg JH, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on treatment of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16:1467–503. https://doi.org/10.1016/j.bbmt.2010.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pollyea DA, Artz AS, Stock W, Daugherty C, Godley L, Odenike OM, et al. Outcomes of patients with AML and MDS who relapse or progress after reduced intensity allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2007;40:1027–32. https://doi.org/10.1038/sj.bmt.1705852

    Article  CAS  PubMed  Google Scholar 

  84. Aoudjhane M, Labopin M, Gorin NC, Shimoni A, Ruutu T, Kolb HJ, et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia. 2005;19:2304–12. https://doi.org/10.1038/sj.leu.2403967

    Article  CAS  PubMed  Google Scholar 

  85. Michallet M, Tanguy ML, Socie G, Thiebaut A, Belhabri A, Milpied N, et al. Second allogeneic haematopoietic stem cell transplantation in relapsed acute and chronic leukaemias for patients who underwent a first allogeneic bone marrow transplantation: a survey of the Societe Francaise de Greffe de moelle (SFGM). Br J Haematol. 2000;108:400–7.

    Article  CAS  Google Scholar 

  86. Radich JP, Sanders JE, Buckner CD, Martin PJ, Petersen FB, Bensinger W, et al. Second allogeneic marrow transplantation for patients with recurrent leukemia after initial transplant with total-body irradiation-containing regimens. J Clin Oncol. 1993;11:304–13. https://doi.org/10.1200/JCO.1993.11.2.304

    Article  CAS  PubMed  Google Scholar 

  87. Shaw BE, Mufti GJ, Mackinnon S, Cavenagh JD, Pearce RM, Towlson KE, et al. Outcome of second allogeneic transplants using reduced-intensity conditioning following relapse of haematological malignancy after an initial allogeneic transplant. Bone Marrow Transplant. 2008;42:783–9. https://doi.org/10.1038/bmt.2008.255

    Article  CAS  PubMed  Google Scholar 

  88. Christopoulos P, Schmoor C, Waterhouse M, Marks R, Wasch R, Bertz H, et al. Reduced-intensity conditioning with fludarabine and thiotepa for second allogeneic transplantation of relapsed patients with AML. Bone Marrow Transplant. 2013;48:901–7. https://doi.org/10.1038/bmt.2012.267

    Article  CAS  PubMed  Google Scholar 

  89. Christopeit M, Kuss O, Finke J, Bacher U, Beelen DW, Bornhauser M, et al. Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol. 2013;31:3259–71. https://doi.org/10.1200/JCO.2012.44.7961

    Article  PubMed  Google Scholar 

  90. Eapen M, Giralt SA, Horowitz MM, Klein JP, Wagner JE, Zhang MJ, et al. Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant. 2004;34:721–7. https://doi.org/10.1038/sj.bmt.1704645

    Article  CAS  PubMed  Google Scholar 

  91. Vrhovac R, Labopin M, Ciceri F, Finke J, Holler E, Tischer J, et al. Second reduced intensity conditioning allogeneic transplant as a rescue strategy for acute leukaemia patients who relapse after an initial RIC allogeneic transplantation: analysis of risk factors and treatment outcomes. Bone Marrow Transplant. 2016;51:186–93. https://doi.org/10.1038/bmt.2015.221

    Article  CAS  PubMed  Google Scholar 

  92. Levine JE, Braun T, Penza SL, Beatty P, Cornetta K, Martino R, et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol. 2002;20:405–12. https://doi.org/10.1200/JCO.2002.20.2.405

    Article  CAS  PubMed  Google Scholar 

  93. Kishi K, Takahashi S, Gondo H, Shiobara S, Kanamaru A, Kato S, et al. Second allogeneic bone marrow transplantation for post-transplant leukemia relapse: results of a survey of 66 cases in 24 Japanese institutes. Bone Marrow Transplant. 1997;19:461–6. https://doi.org/10.1038/sj.bmt.1700680

    Article  CAS  PubMed  Google Scholar 

  94. Hosing C, Saliba RM, Shahjahan M, Estey EH, Couriel D, Giralt S, et al. Disease burden may identify patients more likely to benefit from second allogeneic hematopoietic stem cell transplantation to treat relapsed acute myelogenous leukemia. Bone Marrow Transplant. 2005;36:157–62. https://doi.org/10.1038/sj.bmt.1705011

    Article  CAS  PubMed  Google Scholar 

  95. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24. https://doi.org/10.1038/nrclinonc.2015.128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaus Kröger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkenburg, F., Ruggiero, E., Bonini, C. et al. Prevention and treatment of relapse after stem cell transplantation by cellular therapies. Bone Marrow Transplant 54, 26–34 (2019). https://doi.org/10.1038/s41409-018-0227-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0227-0

This article is cited by

Search

Quick links