Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoration of HMGCS2-mediated ketogenesis alleviates tacrolimus-induced hepatic lipid metabolism disorder

Abstract

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg−1·d−1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tacrolimus induces dyslipidemia and lipid deposition in hepatocytes.
Fig. 2: Tacrolimus inhibits mitochondrial function and FAO in liver cells.
Fig. 3: Tacrolimus inhibits HMGCS2 expression and ketogenesis in hepatocytes.
Fig. 4: HMGCS2 protects hepatocyte from tacrolimus-induced lipid deposition via reducing mitochondrial protein acetylation and maintaining FAO.
Fig. 5: Specific HMGCS2 expression in the liver reverses tacrolimus-induced lipid deposition and hyperlipemia in mice.
Fig. 6: Tacrolimus inhibits HMGCS2 expression by reducing FoxO1 nuclear retention.
Fig. 7: Tacrolimus induces FKBP51-FoxO1 complex formation to preserve FoxO1 in cytoplasm.

Similar content being viewed by others

References

  1. Chakkera HA, Kudva Y, Kaplan B. Calcineurin inhibitors: pharmacologic mechanisms impacting both insulin resistance and insulin secretion leading to glucose dysregulation and diabetes mellitus. Clin Pharmacol Ther. 2017;101:114–20.

    Article  CAS  PubMed  Google Scholar 

  2. Ling Q, Huang H, Han Y, Zhang C, Zhang X, Chen K, et al. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: From bench to bedside. Am J Transpl. 2020;20:701–13.

    Article  CAS  Google Scholar 

  3. Rodriguez-Peralvarez M, Colmenero J, Gonzalez A, Gastaca M, Curell A, Caballero-Marcos A, et al. Cumulative exposure to tacrolimus and incidence of cancer after liver transplantation. Am J Transpl. 2022;22:1671–82.

    Article  CAS  Google Scholar 

  4. Mizuta K, Kobayashi E, Uchida H, Fujimura A, Kawarasaki H, Hashizume K. Influence of tacrolimus on bile acid and lipid composition in continuously drained bile using a rat model. Comparative study with cyclosporine. Transpl Int. 1999;12:316–22.

    CAS  PubMed  Google Scholar 

  5. Cofan F, Cofan M, Campos B, Guerra R, Campistol JM, Oppenheimer F. Effect of calcineurin inhibitors on low-density lipoprotein oxidation. Transpl Proc. 2005;37:3791–3.

    Article  CAS  Google Scholar 

  6. Tory R, Sachs-Barrable K, Goshko CB, Hill JS, Wasan KM. Tacrolimus-induced elevation in plasma triglyceride concentrations after administration to renal transplant patients is partially due to a decrease in lipoprotein lipase activity and plasma concentrations. Transplantation. 2009;88:62–8.

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe M, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S, et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev. 2020;21:e13024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25:262–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asif S, Kim RY, Fatica T, Sim J, Zhao X, Oh Y, et al. Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab. 2022;61:101494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arima Y, Nakagawa Y, Takeo T, Ishida T, Yamada T, Hino S, et al. Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation. Nat Metab. 2021;3:196–210.

    Article  CAS  PubMed  Google Scholar 

  11. Softic S, Meyer JG, Wang GX, Gupta MK, Batista TM, Lauritzen H, et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019;30:735–53.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Love S, Mudasir MA, Bhardwaj SC, Singh G, Tasduq SA. Long-term administration of tacrolimus and everolimus prevents high cholesterol-high fructose-induced steatosis in C57BL/6J mice by inhibiting de-novo lipogenesis. Oncotarget. 2017;8:113403–17.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li S, Zhou H, Xie M, Zhang Z, Gou J, Yang J, et al. Regenerating islet-derived protein 3 gamma (Reg3g) ameliorates tacrolimus-induced pancreatic beta-cell dysfunction in mice by restoring mitochondrial function. Br J Pharmacol. 2022;179:3078–95.

    Article  CAS  PubMed  Google Scholar 

  14. Sikma MA, van Maarseveen EM, van de Graaf EA, Kirkels JH, Verhaar MC, Donker DW, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am J Transpl. 2015;15:2301–13.

    Article  CAS  Google Scholar 

  15. Schaap MM, Zwart EP, Wackers PF, Huijskens I, van de Water B, Breit TM, et al. Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes. Arch Toxicol. 2012;86:1717–27.

    Article  CAS  PubMed  Google Scholar 

  16. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8:1–8.

    PubMed  PubMed Central  Google Scholar 

  17. d’Avignon DA, Puchalska P, Ercal B, Chang Y, Martin SE, Graham MJ, et al. Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight. 2018;3:e99762.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dieterich IA, Lawton AJ, Peng Y, Yu Q, Rhoads TW, Overmyer KA, et al. Acetyl-CoA flux regulates the proteome and acetyl-proteome to maintain intracellular metabolic crosstalk. Nat Commun. 2019;10:3929.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rescigno T, Capasso A, Tecce MF. Involvement of nutrients and nutritional mediators in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression. J Cell Physiol. 2018;233:3306–14.

    Article  CAS  PubMed  Google Scholar 

  20. Yu J, Shi Y, Zhao K, Yang G, Yu L, Li Y, et al. Enhanced expression of beta cell Ca(V)3.1 channels impairs insulin release and glucose homeostasis. Proc Natl Acad Sci USA. 2020;117:448–53.

    Article  CAS  PubMed  Google Scholar 

  21. Tremblay ML, Giguere V. Phosphatases at the heart of FoxO metabolic control. Cell Metab. 2008;7:101–3.

    Article  CAS  PubMed  Google Scholar 

  22. Smedlund KB, Sanchez ER, Hinds TD Jr. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab. 2021;32:862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang C, Chen K, Wei R, Fan G, Cai X, Xu L, et al. The circFASN/miR-33a pathway participates in tacrolimus-induced dysregulation of hepatic triglyceride homeostasis. Signal Transduct Target Ther. 2020;5:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prip-Buus C, Bouthillier-Voisin AC, Kohl C, Demaugre F, Girard J, Pegorier JP. Evidence for an impaired long-chain fatty acid oxidation and ketogenesis in Fao hepatoma cells. Eur J Biochem. 1992;209:291–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kolic J, Beet L, Overby P, Cen HH, Panzhinskiy E, Ure DR, et al. Differential effects of voclosporin and tacrolimus on insulin secretion from human islets. Endocrinology. 2020;161:bqaa162.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang Z, Liu L, Tang H, Jiao W, Zeng S, Xu Y, et al. Immunosuppressive effect of the gut microbiome altered by high-dose tacrolimus in mice. Am J Transpl. 2018;18:1646–56.

    Article  CAS  Google Scholar 

  27. Jiao W, Zhang Z, Xu Y, Gong L, Zhang W, Tang H, et al. Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota. Am J Transpl. 2020;20:2413–24.

    Article  CAS  Google Scholar 

  28. Balsevich G, Hausl AS, Meyer CW, Karamihalev S, Feng X, Pohlmann ML, et al. Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun. 2017;8:1725.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16:259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vila-Brau A, De Sousa-Coelho AL, Mayordomo C, Haro D, Marrero PF. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line. J Biol Chem. 2011;286:20423–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meertens LM, Miyata KS, Cechetto JD, Rachubinski RA, Capone JP. A mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARalpha. EMBO J. 1998;17:6972–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kostiuk MA, Keller BO, Berthiaume LG. Palmitoylation of ketogenic enzyme HMGCS2 enhances its interaction with PPARalpha and transcription at the Hmgcs2 PPRE. FASEB J. 2010;24:1914–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wickramasinghe NM, Sachs D, Shewale B, Gonzalez DM, Dhanan-Krishnan P, Torre D, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2022;29:559–76.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327:1000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baeza J, Smallegan MJ, Denu JM. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci. 2016;41:231–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 2011;433:505–14.

    Article  CAS  PubMed  Google Scholar 

  37. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313–27.

    Article  CAS  PubMed  Google Scholar 

  38. Helsley RN, Park SH, Vekaria HJ, Sullivan PG, Conroy LR, Sun RC, et al. Ketohexokinase-C regulates global protein acetylation to decrease carnitine palmitoyltransferase 1a-mediated fatty acid oxidation. J Hepatol. 2023;79:25–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wagner GR, Payne RM. Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem. 2013;288:29036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 82071749, 81703630). The experiments and data analysis were performed in part in the Medical Branch of the Analysis and Test Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

SLL designed the study, conducted the experiments, analyzed data, and wrote the manuscript. HZ contributed to the design of the study, conducting experiments, and data collection. JL, JY, HMY, MHW, and KSY conducted the experiments. LJ offered technical support. MX supervised the whole project and revised the manuscript. All authors finally approved the version to be submitted.

Corresponding author

Correspondence to Ming Xiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sl., Zhou, H., Liu, J. et al. Restoration of HMGCS2-mediated ketogenesis alleviates tacrolimus-induced hepatic lipid metabolism disorder. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01300-0

Keywords

Search

Quick links