Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sodium oligomannate activates the enteroendocrine-vagal afferent pathways in APP/PS1 mice

Abstract

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer’s disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg−1 ·d−1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg−1 ·d−1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GV-971 enhanced Ca2+ oscillations in RIN-14B cells.
Fig. 2: GV-971 caused an increase of the vagal afferent nerve activity in the ex vivo jejunum preparation.
Fig. 3: Administration of GV-971 in vivo led to elevations of serum 5-HT and CCK levels and increases in jejunal afferent nerve activity in WT mice.
Fig. 4: Long-term treatment with GV-971 resulted in cognitive improvement and elevations of serum 5-HT and CCK levels and jejunal afferent nerve activity in APP/PS1 mice.
Fig. 5: Sweet taste receptor blocker Lactisole inhibited the effects of GV-971.
Fig. 6: Sweet taste receptor blocker Lactisole inhibited the effects of GV-971 in APP/PS1 mice.
Fig. 7: Schematic diagram of the mechanisms that may underlie the effects of sodium oligomannate (GV-971) on the enteroendocrine-vagal afferent pathways.

Similar content being viewed by others

References

  1. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623–32.

    Article  CAS  PubMed  Google Scholar 

  2. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–80.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim MS, Kim Y, Choi H, Kim W, Park S, Lee D, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020;69:283–94.

    Article  CAS  PubMed  Google Scholar 

  4. Wang XY, Sun GQ, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29:787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Q, Xi YJ, Wang QX, Liu JH, Li PR, Meng X, et al. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5×FAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun. 2021;95:330–43.

    Article  CAS  PubMed  Google Scholar 

  6. Chen C, Zhou Y, Wang H, Alam A, Kang SS, Ahn EH, et al. Gut inflammation triggers C/EBPβ/δ-secretase-dependent gut-to-brain propagation of Aβ and Tau fibrils in Alzheimer’s disease. EMBO J. 2021;40:e106320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101:998–1002.

    Article  PubMed  Google Scholar 

  8. Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. Sensory neurons that detect stretch and nutrients in the digestive system. Cell. 2016;166:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Osadchiy V, Martin CR, Mayer EA. Gut microbiome and modulation of CNS function. Compr Physiol. 2019;10:57–72.

    Article  PubMed  Google Scholar 

  10. Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest. 2015;125:782–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, et al. The diverse metabolic roles of peripheral serotonin. Endocrinology. 2017;158:1049–63.

    Article  CAS  PubMed  Google Scholar 

  12. Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2016;28:620–30.

    Article  CAS  PubMed  Google Scholar 

  13. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361:eaat5236.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR, Linden DR, et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci USA. 2018;115:E7632–E7641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell. 2017;170:185–98.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ. The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil. 2017;29:e13046.

  17. Furness JB, Rivera LR, Cho H-J, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10:729–40.

    Article  CAS  PubMed  Google Scholar 

  18. Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil. 2008;20:64–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suarez AN, Hsu TM, Liu CM, Noble EE, Cortella AM, Nakamoto EM, et al. Gut vagal sensory signaling regulates hippocampus function through multi-order pathways. Nat Commun. 2018;9:2181.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klarer M, Krieger J-P, Richetto J, Weber-Stadlbauer U, Günther L, Winter C, et al. Abdominal vagal afferents modulate the brain transcriptome and behaviors relevant to schizophrenia. J Neurosci. 2018;38:1634–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klarer M, Arnold M, Günther L, Winter C, Langhans W, Meyer U. Gut vagal afferents differentially modulate innate anxiety and learned fear. J Neurosci. 2014;34:7067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ronchi G, Ryu V, Fornaro M, Czaja K. Hippocampal plasticity after a vagus nerve injury in the rat. Neural Regen Res. 2012;7:1055–63.

    PubMed  PubMed Central  Google Scholar 

  23. O’Leary OF, Ogbonnaya ES, Felice D, Levone BR, C Conroy L, Fitzgerald P, et al. The vagus nerve modulates BDNF expression and neurogenesis in the hippocampus. Eur Neuropsychopharmacol. 2018;28:307–16.

    Article  PubMed  Google Scholar 

  24. Clark KB, Smith DC, Hassert DL, Browning RA, Naritoku DK, Jensen RA. Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem. 1998;70:364–73.

    Article  CAS  PubMed  Google Scholar 

  25. Biggio F, Gorini G, Utzeri C, Olla P, Marrosu F, Mocchetti I, et al. Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. Int J Neuropsychopharmacol. 2009;12:1209–21.

    Article  PubMed  Google Scholar 

  26. Zuo Y, Smith DC, Jensen RA. Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol Behav. 2007;90:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci. 1999;2:94–98.

    Article  CAS  PubMed  Google Scholar 

  28. Sjögren MJ, Hellström PT, Jonsson MA, Runnerstam M, Silander HC, Ben-Menachem E. Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer’s disease: a pilot study. J Clin Psychiatry. 2002;63:972–80.

    Article  PubMed  Google Scholar 

  29. Merrill CA, Jonsson MAG, Minthon L, Ejnell H, C-son Silander H, Blennow K, et al. Vagus nerve stimulation in patients with Alzheimer’s disease: Additional follow-up results of a pilot study through 1 year. J Clin Psychiatry. 2006;67:1171–8.

    Article  CAS  PubMed  Google Scholar 

  30. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, et al. Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry. 2000;47:276–86.

    Article  CAS  PubMed  Google Scholar 

  31. Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci USA. 2009;106:3408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han LH, Gong HS, Zhu CH, Zhang GH, Rong WF. Role of NaV1.3 in control of excitability of RIN-14B cells. J Shanghai Jiaotong Univ (Med Sci). 2019;39:142–6.

    Google Scholar 

  33. Rong W, Hillsley K, Davis JB, Hicks G, Winchester WJ, Grundy D. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol. 2004;560:867–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rong W, Winchester WJ, Grundy D. Spontaneous hypersensitivity in mesenteric afferent nerves of mice deficient in the sst2 subtype of somatostatin receptor. J Physiol. 2007;581:779–86.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, et al. Enterochromaffin 5-HT cells - a major target for GLP-1 and gut microbial metabolites. Mol Metab. 2018;11:70–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho HJ, Callaghan B, Bron R, Bravo DM, Furness JB. Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell Tissue Res. 2014;356:77–82.

    Article  CAS  PubMed  Google Scholar 

  37. Laffitte A, Neiers F, Briand L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care. 2014;17:379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci. 2007;10:277–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kim M, Cooke HJ, Javed NH, Carey HV, Christofi F, Raybould HE. D-glucose releases 5-hydroxytryptamine from human BON cells as a model of enterochromaffin cells. Gastroenterology. 2001;121:1400–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kidd M, Eick GN, Modlin IM, Pfragner R, Champaneria MC, Murren J. Further delineation of the continuous human neoplastic enterochromaffin cell line, KRJ-I, and the inhibitory effects of lanreotide and rapamycin. J Mol Endocrinol. 2007;38:181–92.

    Article  CAS  PubMed  Google Scholar 

  41. Strege PR, Knutson K, Eggers SJ, Li JH, Wang F, Linden D, et al. Sodium channel NaV1.3 is important for enterochromaffin cell excitability and serotonin release. Sci Rep. 2017;7:15650.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pérez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, et al. A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci. 2002;5:1169–76.

    Article  PubMed  Google Scholar 

  43. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112:293–301.

    Article  CAS  PubMed  Google Scholar 

  44. Dyer J, Salmon KSH, Zibrik L, Shirazi-Beechey SP. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans. 2005;33:302–5.

    Article  CAS  PubMed  Google Scholar 

  45. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA. 2007;104:15075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown RJ, Rother KI. Non-nutritive sweeteners and their role in the gastrointestinal tract. J Clin Endocrinol Metab. 2012;97:2597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Hao Y, Zhu J, Owyang C. Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats. Gastroenterology. 2000;118:1197–207.

    Article  CAS  PubMed  Google Scholar 

  48. Kai K, Hashimoto M, Amano K, Tanaka H, Fukuhara R, Ikeda M. Relationship between eating disturbance and dementia severity in patients with Alzheimer’s disease. PLoS One. 2015;10:e0133666.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kanoski SE, Grill HJ. Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol Psychiatry. 2017;81:748–56.

    Article  PubMed  Google Scholar 

  50. Chéron JB, Golebiowski J, Antonczak S, Fiorucci S. The anatomy of mammalian sweet taste receptors. Proteins. 2017;85:332–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tian-yu Li for helpful discussions. This work was supported by grants from National Natural Science Foundation of China (32171118, 82370565, 31671049, 31371066), the National Key New Drug Creation Program of China (2018ZX09711002-002-012), the Shanghai Municipal Science and Technology Major Project (184319071000 and 19140903102), and the Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20211102).

Author information

Authors and Affiliations

Authors

Contributions

HSG, WFR, and YL designed the project. HSG, JPP, MMW, and LD performed experiments and analyzed data. FG assisted with behavioral experiments. HSG, YL, and WFR wrote the manuscript.

Corresponding authors

Correspondence to Yang Li or Wei-fang Rong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Hs., Pan, Jp., Guo, F. et al. Sodium oligomannate activates the enteroendocrine-vagal afferent pathways in APP/PS1 mice. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01293-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01293-w

Keywords

Search

Quick links