Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteomics analysis of histone deacetylase inhibitor-resistant solid tumors reveals resistant signatures and potential drug combinations

Abstract

Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TMT-based proteomics and phosphoproteomics analysis of the HDACi-sensitive and resistant cell lines treated with SAHA.
Fig. 2: GSEA analysis of proteome in the HDACi-sensitive and resistant cell lines treated with SAHA.
Fig. 3: Proteomics analysis of ribosome biogenesis and MYC target in the sensitive and resistant cell lines treated with SAHA.
Fig. 4: The prediction and validation of potential combined drugs with HDACi based on proteomics data.
Fig. 5: Functional phosphoproteomics analysis of differential phosphorylation sites in the sensitive and resistant cells after SAHA treatment.
Fig. 6: Kinase analysis in the sensitive and resistant cells after SAHA treatment.

Similar content being viewed by others

Data availability

All mass spectrometry raw data have been deposited to the iProX Consortium with Project ID: IPX0006624000.

References

  1. Feinberg AP, Levchenko A. Epigenetics as a mediator of plasticity in cancer. Science. 2023;379:eaaw3835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25:403–18.

    Article  CAS  PubMed  Google Scholar 

  3. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  4. Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 2009;27:5459–68.

    Article  CAS  PubMed  Google Scholar 

  5. Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91.

    Article  CAS  PubMed  Google Scholar 

  6. Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30:631–6.

    Article  CAS  PubMed  Google Scholar 

  7. Laubach JP, Moreau P, San-Miguel JF, Richardson PG. Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 2015;21:4767–73

  8. Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res. 2009;15:3958–69.

    Article  CAS  PubMed  Google Scholar 

  9. Bandyopadhyay D, Mishra A, Medrano EE. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res. 2004;64:7706–10.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng H, Qu J, Jin N, Xu J, Lin C, Chen Y, et al. Feedback activation of leukemia inhibitory factor receptor limits response to histone deacetylase inhibitors in breast cancer. Cancer Cell. 2016;30:459–73.

    Article  CAS  PubMed  Google Scholar 

  11. Piekarz RL, Robey RW, Zhan Z, Kayastha G, Sayah A, Abdeldaim AH, et al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood. 2004;103:4636–43.

    Article  CAS  PubMed  Google Scholar 

  12. Robey RW, Chakraborty AR, Basseville A, Luchenko V, Bahr J, Zhan Z, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharmacol. 2011;8:2021–31.

    Article  CAS  Google Scholar 

  13. Laubach JP, Schjesvold F, Mariz M, Dimopoulos MA, Lech-Maranda E, Spicka I, et al. Efficacy and safety of oral panobinostat plus subcutaneous bortezomib and oral dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma (PANORAMA 3): an open-label, randomised, phase 2 study. Lancet Oncol. 2021;22:142–54.

    Article  CAS  PubMed  Google Scholar 

  14. Krug LM, Kindler HL, Calvert H, Manegold C, Tsao AS, Fennell D, et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol. 2015;16:447–56.

    Article  CAS  PubMed  Google Scholar 

  15. Sekeres MA, Othus M, List AF, Odenike O, Stone RM, Gore SD, et al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol. 2017;35:2745–53.

    Article  CAS  PubMed  Google Scholar 

  16. Sanda T, Li X, Gutierrez A, Ahn Y, Neuberg DS, O’Neil J, et al. Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood. 2010;115:1735–45.

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell DC, Kuljanin M, Li J, Van Vranken JG, Bulloch N, Schweppe DK, et al. A proteome-wide atlas of drug mechanism of action. Nat Biotechnol. 2023;41:845–57.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Liu Y, Qian L, Jiang S, Gai X, Ye S, et al. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies. Mol Cell. 2021;81:4076–90.e8.

    Article  CAS  PubMed  Google Scholar 

  19. Meissner F, Geddes-McAlister J, Mann M, Bantscheff M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov. 2022;21:637–54.

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Zhang J, Lu S, Huang W, Geng L, Shen Q, et al. The mechanism of allosteric inhibition of protein tyrosine phosphatase 1B. PLoS One. 2014;9:e97668.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Ni D, Li Y, Qiu Y, Pu J, Lu S, Zhang J. Combining allosteric and orthosteric drugs to overcome drug resistance. Trends Pharmacol Sci. 2020;41:336–48.

    Article  CAS  PubMed  Google Scholar 

  22. Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin. 2022;43:3112–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Q, Hao B, Zhang M, Liu Z, Huang Y, Zhao X, et al. An integrative proteome-based pharmacologic characterization and therapeutic strategy exploration of SAHA in solid malignancies. J Proteome Res. 2022;21:953–64.

    Article  CAS  PubMed  Google Scholar 

  24. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–61.

    Article  CAS  PubMed  Google Scholar 

  25. Catez F, Dalla Venezia N, Marcel V, Zorbas C, Lafontaine DLJ, Diaz JJ. Ribosome biogenesis: an emerging druggable pathway for cancer therapeutics. Biochem Pharmacol. 2019;159:74–81.

    Article  CAS  PubMed  Google Scholar 

  26. Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell. 2020;182:245–61.e17.

    Article  CAS  PubMed  Google Scholar 

  27. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, et al. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer. 2020;19:62.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ward RA, Fawell S, Floc’h N, Flemington V, McKerrecher D, Smith PD. Challenges and opportunities in cancer drug resistance. Chem Rev. 2021;121:3297–351.

    Article  CAS  PubMed  Google Scholar 

  31. Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov. 2023;22:213–34.

    Article  CAS  PubMed  Google Scholar 

  32. Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER 3rd, Kalocsay M, et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell. 2020;180:387–402.e16.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD, et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell. 2010;17:427–42.

    Article  PubMed  Google Scholar 

  34. Rausch M, Weiss A, Zoetemelk M, Piersma SR, Jimenez CR, van Beijnum JR, et al. Optimized combination of HDACI and TKI efficiently inhibits metabolic activity in renal cell carcinoma and overcomes sunitinib resistance. Cancers. 2020;12:3172.

    Article  CAS  PubMed  Google Scholar 

  35. Witta SE, Jotte RM, Konduri K, Neubauer MA, Spira AI, Ruxer RL, et al. Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J Clin Oncol. 2012;30:2248–55.

    Article  CAS  PubMed  Google Scholar 

  36. Wang BR, Wan CL, Liu SB, Qiu QC, Wu TM, Wang J, et al. A combined histone deacetylases targeting strategy to overcome venetoclax plus azacitidine regimen resistance in acute myeloid leukaemia: three case reports. Front Oncol. 2021;11:797941.

    Article  CAS  PubMed  Google Scholar 

  37. Chakraborty AR, Robey RW, Luchenko VL, Zhan Z, Piekarz RL, Gillet JP, et al. MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor. Blood. 2013;121:4115–25.

    Article  CAS  PubMed  Google Scholar 

  38. Ozaki K, Minoda A, Kishikawa F, Kohno M. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death. Biochem Biophys Res Commun. 2006;339:1171–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ochoa D, Jarnuczak AF, Viéitez C, Gehre M, Soucheray M, Mateus A, et al. The functional landscape of the human phosphoproteome. Nat Biotechnol. 2020;38:365–73.

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Wu X, Pan ZK, Huang S. Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res. 2010;70:9979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Groselj B, Sharma NL, Hamdy FC, Kerr M, Kiltie AE. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br J Cancer. 2013;108:748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang H, Cao X, Tang M, Zhong G, Si Y, Li H, et al. A subcellular map of the human kinome. Elife. 2021;10:e64943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morrison DK, Heidecker G, Rapp UR, Copeland TD. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem. 1993;268:17309–16.

    Article  CAS  PubMed  Google Scholar 

  44. Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002;108:781–94.

    Article  CAS  PubMed  Google Scholar 

  45. Wiredja DD, Koyutürk M, Chance MR. The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics. Bioinformatics. 2017;33:3489–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Faião-Flores F, Emmons MF, Durante MA, Kinose F, Saha B, Fang B, et al. HDAC inhibition enhances the in vivo efficacy of MEK inhibitor therapy in uveal melanoma. Clin Cancer Res. 2019;25:5686–701.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pan YR, Chen CC, Chan YT, Wang HJ, Chien FT, Chen YL, et al. STAT3-coordinated migration facilitates the dissemination of diffuse large B-cell lymphomas. Nat Commun. 2018;9:3696.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32071432, 32171434, 82272943, 32322048), the Youth Science and Technology Talents in Shanghai Sail Plan of China (21YF1456000), Young Elite Scientists Sponsorship Program by CAST (2022QNRC001), Shanghai Rising-Star Program (22QA1411100), the Youth Innovation Promotion Association (CAS2021276) and the Sanofi Scholarship Program, Shanghai Committee of Science and Technology, China (21Y11913400), Guangdong High-level New R&D Institute, China (2019B090904008), Guangdong High-level Innovative Research Institute, China (2021B0909050003).

Author information

Authors and Affiliations

Authors

Contributions

MJT, BBH, DX and JYX conceived and supervised the project; BBH and JYX performed all the proteomics experiments; BBH, KM, JYX and RFF analyzed the data and performed the biological experiments; XLJ assisted with part of experiments; WSZ, LHZ and SL assisted with part of data analysis; BBH, KM, JYX and RFF wrote the manuscript; MJT and DX revised the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Jun-yu Xu, Dong Xie or Min-jia Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Bb., Ma, K., Xu, Jy. et al. Proteomics analysis of histone deacetylase inhibitor-resistant solid tumors reveals resistant signatures and potential drug combinations. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01236-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01236-5

Keywords

Search

Quick links