Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clobetasol propionate, a Nrf-2 inhibitor, sensitizes human lung cancer cells to radiation-induced killing via mitochondrial ROS-dependent ferroptosis

Abstract

Combining radiotherapy with Nrf-2 inhibitor holds promise as a potential therapeutic strategy for radioresistant lung cancer. Here, the radiosensitizing efficacy of a synthetic glucocorticoid clobetasol propionate (CP) in A549 human lung cancer cells was evaluated. CP exhibited potent radiosensitization in lung cancer cells via inhibition of Nrf-2 pathway, leading to elevation of oxidative stress. Transcriptomic studies revealed significant modulation of pathways related to ferroptosis, fatty acid and glutathione metabolism. Consistent with these findings, CP treatment followed by radiation exposure showed characteristic features of ferroptosis in terms of mitochondrial swelling, rupture and loss of cristae. Ferroptosis is a form of regulated cell death triggered by iron-dependent ROS accumulation and lipid peroxidation. In combination with radiation, CP showed enhanced iron release, mitochondrial ROS, and lipid peroxidation, indicating ferroptosis induction. Further, iron chelation, inhibition of lipid peroxidation or scavenging mitochondrial ROS prevented CP-mediated radiosensitization. Nrf-2 negatively regulates ferroptosis through upregulation of antioxidant defense and iron homeostasis. Interestingly, Nrf-2 overexpressing A549 cells were refractory to CP-mediated ferroptosis induction and radiosensitization. Thus, this study identified anti-psoriatic drug clobetasol propionate can be repurposed as a promising radiosensitizer for Keap-1 mutant lung cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clobetasol propionate enhanced radiosensitivity of human lung cancer cells.
Fig. 2: Clobetasol propionate induced oxidative stress via inhibition of Nrf-2.
Fig. 3: CP treatment resulted in increased DNA damage when combined with radiation.
Fig. 4: Clobetasol propionate impaired mitochondrial health and function when combined with radiation.
Fig. 5: Clobetasol propionate induced ferroptosis in lung cancer cells exposed to radiation.
Fig. 6: Radiosensitization by clobetasol propionate is dependent on mitochondrial ROS.
Fig. 7: Role of Nrf-2 in ferroptosis mediated radiosensitization.
Scheme 1: Clobetasol propionate induces radiosensitization of human lung cancer cells via ferroptosis.

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol. 2021;25:45–52.

    CAS  Google Scholar 

  2. Uzel EK, Figen M, Uzel Ö. Radiotherapy in lung cancer: current and future role. Sisli Etfal Hastan Tip Bul. 2019;53:353–60.

    PubMed  PubMed Central  Google Scholar 

  3. Aravindan N, Aravindan S, Pandian V, Khan FH, Ramraj SK, Natt P, et al. Acquired tumor cell radiation resistance at the treatment site is mediated through radiation-orchestrated intercellular communication. Int J Radiat Oncol Biol Phys. 2014;88:677–85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Césaire M, Montanari J, Curcio H, Lerouge D, Gervais R, Demontrond P, et al. Radioresistance of non-small cell lung cancers and therapeutic perspectives. Cancers. 2022;14:2829.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu YP, Zheng CC, Huang YN, He ML, Xu WW, Li B. Molecular mechanisms of chemo‐and radiotherapy resistance and the potential implications for cancer treatment. MedComm. 2021;2:315–40.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15:1–11.

    Article  Google Scholar 

  7. Rich TA, Shepard RC, Mosley ST. Four decades of continuing innovation with fluorouracil: current and future approaches to fluorouracil chemoradiation therapy. J Clin Oncol. 2004;22:2214–32.

    Article  CAS  PubMed  Google Scholar 

  8. Choi E, Jung B, Lee S, Yoo H, Shin E, Ko H, et al. A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene. 2017;36:5285–95.

    Article  CAS  PubMed  Google Scholar 

  9. Tian Y, Liu Q, He X, Yuan X, Chen Y, Chu Q, et al. Emerging roles of Nrf2 signal in non-small cell lung cancer. J Hematol Oncol. 2016;9:1–9.

    Google Scholar 

  10. Sánchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in lung cancer. Cells. 2021;10:1879.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal. 2010;13:1627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiang Y, Ye W, Huang C, Yu D, Chen H, Deng T, et al. Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oxid Med Cell Longev. 2018;2018:2360427.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA. 2011;108:1433–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ji L, Moghal N, Zou X, Fang Y, Hu S, Wang Y, et al. The NRF2 antagonist ML385 inhibits PI3K‐mTOR signaling and growth of lung squamous cell carcinoma cells. Cancer Med. 2023;12:5688–702.

    Article  CAS  PubMed  Google Scholar 

  15. Qin S, He X, Lin H, Schulte BA, Zhao M, Tew KD, et al. Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair. Free Radic Biol Med. 2021;169:238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun X, Dong M, Gao Y, Wang Y, Du L, Liu Y, et al. Metformin increases the radiosensitivity of non-small cell lung cancer cells by destabilizing NRF2. Biochem Pharmacol. 2022;199:114981.

    Article  CAS  PubMed  Google Scholar 

  17. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30:1704007.

    Article  Google Scholar 

  19. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 2020;30:478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 2020;30:146–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su J, Bian C, Zheng Z, Wang H, Meng L, Xin Y, et al. Cooperation effects of radiation and ferroptosis on tumor suppression and radiation injury. Front Cell Dev Biol. 2022;10:951116.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ye LF, Chaudhary KR, Zandkarimi F, Harken AD, Kinslow CJ, Upadhyayula PS, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 2020;15:469–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Cao F, Yin H-l, Huang Z-j, Lin Z-t, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci Adv. 2023;9:eade9585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shakya A, McKee NW, Dodson M, Chapman E, Zhang DD. Anti-ferroptotic effects of Nrf2: Beyond the antioxidant response. Mol Cells. 2023;46:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dodson M, Anandhan A, Zhang DD. MGST1, a new soldier of NRF2 in the battle against ferroptotic death. Cell Chem Biol. 2021;28:741–2.

    Article  CAS  PubMed  Google Scholar 

  30. Maurya DK. ColonyCountJ: a user-friendly image J Add-on program for quantification of different colony parameters in clonogenic assay. J Clin Toxicol. 2017;7:1–4.

    MathSciNet  Google Scholar 

  31. Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR. Radiation survival models, SLD, PLD, and dose rate. In: Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR, Editors. Basic Radiotherapy Physics and Biology. Springer International Publishing, Cham; 2021. p 243–53.

  32. Patwardhan R, Sharma D, Checker R, Sandur SK. Mitigation of radiation-induced hematopoietic injury via regulation of cellular MAPK/phosphatase levels and increasing hematopoietic stem cells. Free Radic Biol Med. 2014;68:52–64.

    Article  CAS  PubMed  Google Scholar 

  33. Jayakumar S, Kunwar A, Sandur SK, Pandey BN, Chaubey RC. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radiosensitivity. Biochim Biophys Acta Gen Subj. 2014;1840:485–94.

    Article  CAS  Google Scholar 

  34. Pachpatil PK, Kanojia SV, Ghosh A, Majumdar AG, Wadawale A, Mohapatra M, et al. Stable, triplet ground state BODIPY-TEMPO diradical as a selective turn on fluorescence sensor for intracellular labile iron pool. Sens Actuators B Chem. 2022;370:132474.

    Article  CAS  Google Scholar 

  35. Sharma D, Eichelberg MR, Haag JD, Meilahn AL, Muelbl MJ, Schell K, et al. Effective flow cytometric phenotyping of cells using minimal amounts of antibody. Biotechniques. 2012;53:57–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andrews S, Krueger F, Seconds-Pichon A, Biggins F, Wingett SF. A quality control tool for high throughput sequence data. Babraham Bioinforma Babraham Inst. 2014;1:1.

    Google Scholar 

  37. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.

    Article  PubMed  Google Scholar 

  40. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

    Article  Google Scholar 

  41. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43:W566–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay methodsynergy quantification method. Cancer Res. 2010;70:440–6.

    Article  CAS  PubMed  Google Scholar 

  45. Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD (P) H: quinone oxidoreductase-1 gene expression. J Biol Chem. 2003;278:44675–82.

    Article  CAS  PubMed  Google Scholar 

  46. Jayakumar S, Pal D, Sandur SK. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells. Mutat Res. 2015;779:33–45.

    Article  CAS  PubMed  Google Scholar 

  47. Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Annu Rev Cancer Biol. 2019;3:35–54.

    Article  Google Scholar 

  48. Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and cancer: mitochondria meet the “iron maiden” cell death. Cells. 2020;9:1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, et al. Dysfunctional KEAP1–NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006;3:e420.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xia D, Zhang XR, Ma YL, Zhao ZJ, Zhao R, Wang YY. Nrf2 promotes esophageal squamous cell carcinoma (ESCC) resistance to radiotherapy through the CaMKIIα-associated activation of autophagy. Cell Biosci. 2020;10:1–12.

    Article  Google Scholar 

  52. Zhao Q, Mao A, Yan J, Sun C, Di C, Zhou X, et al. Downregulation of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch signaling in non-small cell lung cancer cells. Int J Oncol. 2016;48:765–73.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth the loss of Keap1 activity in prostate cancer cells. Mol Cancer Ther. 2010;9:336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng L, Zhao K, Sun L, Yin X, Zhang J, Liu C, et al. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med. 2021;19:1–16.

    Article  Google Scholar 

  55. Liu X, Sun C, Liu B, Jin X, Li P, Zheng X, et al. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region. Oncotarget. 2016;7:27267.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun M, Pan D, Chen Y, Li Y, Gao K, Hu B. Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway. Oncotarget. 2017;8:32807.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xu S, Huang H, Tang D, Xing M, Zhao Q, Li J, et al. Diallyl disulfide attenuates ionizing radiation-induced migration and invasion by suppressing Nrf2 signaling in non–small-cell lung cancer. Dose-Response. 2021;19:15593258211033114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petrini JH, Stracker TH. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol. 2003;13:458–62.

    Article  CAS  PubMed  Google Scholar 

  59. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol. 2000;151:1381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Feng H, Stockwell BR. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16:e2006203.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76.

    Article  CAS  PubMed  Google Scholar 

  63. Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab. 2008;8:237–48.

    Article  CAS  PubMed  Google Scholar 

  64. Liu CY, Liu CC, Li AFY, Hsu TW, Lin JH, Hung SC, et al. Glutathione peroxidase 4 expression predicts poor overall survival in patients with resected lung adenocarcinoma. Sci Rep. 2022;12:20462.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–8.

    Article  CAS  PubMed  Google Scholar 

  66. McDonald JT, Kim K, Norris AJ, Vlashi E, Phillips TM, Lagadec C, et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010;70:8886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kiesslich T, Mayr C, Neureiter D. NRF2: The key to tumor-and patient-dependent chemosensitivity in biliary tract cancer? EBioMedicine. 2019;49:9–10.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov. 2022;8:501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu Z, Xiao B, Chen W, Tang T, Chen X. The potential of ferroptosis combined with radiotherapy in cancer treatment. Front Oncol. 2023;13:158.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the scientific inputs provided by Dr. Deepak Sharma, SO/G, RB&HSD, Dr. Dharmendra K. Maurya, SO/G, RB&HSD and Dr.Dibakar Goswami, SO/G, BOD. Authors also acknowledge the technical help provided by Ms. Binita Kislay Kumar for flow cytometry and Mr. B. A. Naidu & Mr. Deepak Kathole for help during irradiation of cells. Authors would like to thank ACTREC’s TEM facility and animal house facility. The authors acknowledge the funding provided by DAE, Government of India to conduct research as outlined in this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SKS; Methodology: AR, PP, SJ, GCP; Investigation: AR, SJ, SP, DD, GCP; Visualization: AR, RSP, SJ, SP, DD; Funding acquisition: SKS; Resources: SKS, SJ, VG; Project administration: SKS; Supervision: SKS; Writing – original draft: AR; Writing – review & editing: RSP, SJ, SKS.

Corresponding author

Correspondence to Santosh K. Sandur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. Study does not include any data with human identification information. No studies on human participants were performed.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, A., Patwardhan, R.S., Jayakumar, S. et al. Clobetasol propionate, a Nrf-2 inhibitor, sensitizes human lung cancer cells to radiation-induced killing via mitochondrial ROS-dependent ferroptosis. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01233-8

Keywords

Search

Quick links