Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammalian integrated stress responses in stressed organelles and their functions

Abstract

The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PERK, GCN2, PKR, HRI are the four kinases of ISR.
Fig. 2: The eIF2B-mediated ternary complex (TC) cycle and PP1-mediated negative feedback regulatory pathway.
Fig. 3: Translation translocation of ATF4 under ISR regulation.
Fig. 4: Interaction between ISR and mTORC1.
Fig. 5: Integrated stress responses within various organelles, including the endoplasmic reticulum (ER), mitochondria (MT), Golgi apparatus (GA), and lysosome (LYS).
Fig. 6: ISR modulators in diseases.

Similar content being viewed by others

References

  1. Kashiwagi K, Yokoyama T, Nishimoto M, Takahashi M, Sakamoto A, Yonemochi M, et al. Structural basis for eIF2B inhibition in integrated stress response. Science. 2019;364:495–9.

    Article  CAS  PubMed  Google Scholar 

  2. Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, et al. Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol. 2002;12:1279–86.

    Article  CAS  PubMed  Google Scholar 

  3. Balsa E, Soustek MS, Thomas A, Cogliati S, García-Poyatos C, Martín-García E, et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α Axis. Mol Cell. 2019;74:877–90.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kashiwagi K, Shichino Y, Osaki T, Sakamoto A, Nishimoto M, Takahashi M, et al. eIF2B-capturing viral protein NSs suppresses the integrated stress response. Nat Commun. 2021;12:7102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC, et al. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 2013;15:R2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta. 2014;1843:1948–68.

    Article  CAS  PubMed  Google Scholar 

  7. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Di Conza G, Ho PC, Cubillos-Ruiz JR, Huang SC. Control of immune cell function by the unfolded protein response. Nat Rev Immunol. 2023;23:546–62.

    Article  PubMed  Google Scholar 

  9. Donnelly N, Gorman A, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol life Sci. 2013;70:3493–511.

    Article  CAS  PubMed  Google Scholar 

  10. Kopp MC, Larburu N, Durairaj V, Adams CJ, Ali MMU. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol. 2019;26:1053–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14:230–9.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez NW, Gómez FE, Matus S. The potential role of protein kinase R as a regulator of age-related neurodegeneration. Front Aging Neurosci. 2021;13:638208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Ge Y, Dong J, Wang H, Zhao T, Wang X, et al. BZW1 facilitates glycolysis and promotes tumor growth in pancreatic ductal adenocarcinoma through potentiating eIF2α phosphorylation. Gastroenterology. 2022;162:1256–71.e14.

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Chen Y, Wang H, Wei Y, Yuan Y, Zhou Q, et al. Microglia-derived IL-1β promoted neuronal apoptosis through ER stress-mediated signaling pathway PERK/eIF2α/ATF4/CHOP upon arsenic exposure. J Hazard Mater. 2021;417:125997.

    Article  CAS  PubMed  Google Scholar 

  15. Klann K, Tascher G, Münch C. Functional translatome proteomics reveal converging and dose-dependent regulation by mTORC1 and eIF2α. Mol Cell. 2020;77:913–25.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wek RC. Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol. 2018;10:a032870.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Santos-Ribeiro D, Godinas L, Pilette C, Perros F. The integrated stress response system in cardiovascular disease. Drug Discov Today. 2018;23:920–9.

    Article  CAS  PubMed  Google Scholar 

  18. Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YT, et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature. 2020;579:427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Girardin SE, Cuziol C, Philpott DJ, Arnoult D. The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J. 2021;288:3094–107.

    Article  CAS  PubMed  Google Scholar 

  20. Hugon J, Mouton-Liger F, Dumurgier J, Paquet C. PKR involvement in Alzheimer’s disease. Alzheimers Res Ther. 2017;9:83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, Sonenberg N, et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell. 2010;140:338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mangali S, Bhat A, Udumula MP, Dhar I, Sriram D, Dhar A. Inhibition of protein kinase R protects against palmitic acid-induced inflammation, oxidative stress, and apoptosis through the JNK/NF-κB/NLRP3 pathway in cultured H9C2 cardiomyocytes. J Cell Biochem. 2019;120:3651–63.

    Article  CAS  PubMed  Google Scholar 

  23. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman A. The integrated stress response. EMBO Rep. 2016;17:1374–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. You K, Wang L, Chou CH, Liu K, Nakata T, Jaiswal A, et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science. 2021;371:eabb6896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaurasia M, Gupta S, Das A, Dwarakanath BS, Simonsen A, Sharma K. Radiation induces EIF2AK3/PERK and ERN1/IRE1 mediated pro-survival autophagy. Autophagy. 2019;15:1391–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun W, Yang J, Zhang Y, Xi Y, Wen X, Yuan D, et al. Exogenous H2S restores ischemic post-conditioning-induced cardioprotection through inhibiting endoplasmic reticulum stress in the aged cardiomyocytes. Cell Biosci. 2017;7:67.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pan B, Sun J, Liu Z, Wang L, Huo H, Zhao Y, et al. Longxuetongluo capsule protects against cerebral ischemia/reperfusion injury through endoplasmic reticulum stress and MAPK-mediated mechanisms. J Adv Res. 2021;33:215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol. 2005;59:407–50.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Wang R, Zhang Z, Jiao X. Analysis of stability of neural network with inhibitory neurons. Cogn Neurodyn. 2010;4:61–8.

    Article  PubMed  Google Scholar 

  30. Menacho-Marquez M, Perez-Valle J, Ariño J, Gadea J, Murguía JR. Gcn2p regulates a G1/S cell cycle checkpoint in response to DNA damage. Cell Cycle. 2007;6:2302–5.

    Article  CAS  PubMed  Google Scholar 

  31. Bogorad AM, Lin KY, Marintchev A. Novel mechanisms of eIF2B action and regulation by eIF2α phosphorylation. Nucleic Acids Res. 2017;45:11962–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adomavicius T, Guaita M, Zhou Y, Jennings MD, Latif Z, Roseman AM, et al. The structural basis of translational control by eIF2 phosphorylation. Nat Commun. 2019;10:2136.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ross JA, Bressler KR, Thakor N. Eukaryotic initiation factor 5B (eIF5B) cooperates with eIF1A and eIF5 to facilitate uORF2-mediated repression of ATF4 translation. Int J Mol Sci. 2018;19:4032.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA. 2004;101:11269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaspar S, Oertlin C, Szczepanowska K, Kukat A, Senft K, Lucas C, et al. Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Sci Adv. 2021;7:eabf0971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hinnebusch AG. The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem. 2014;83:779–812.

    Article  CAS  PubMed  Google Scholar 

  38. Boesen T, Mohammad SS, Pavitt GD, Andersen GR. Structure of the catalytic fragment of translation initiation factor 2B and identification of a critically important catalytic residue. J Biol Chem. 2004;279:10584–92.

    Article  CAS  PubMed  Google Scholar 

  39. Kenner LR, Anand AA, Nguyen HC, Myasnikov AG, Klose CJ, McGeever LA, et al. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science. 2019;364:491–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science. 2020;368:eaat5314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell. 2009;139:468–84.

    Article  CAS  PubMed  Google Scholar 

  42. Crespillo-Casado A, Claes Z, Choy MS, Peti W, Bollen M, Ron D. A Sephin1-insensitive tripartite holophosphatase dephosphorylates translation initiation factor 2α. J Biol Chem. 2018;293:7766–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, et al. Loss of protein phosphatase 1 regulatory subunit PPP1R3A promotes atrial fibrillation. Circulation. 2019;140:681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Q, Zhao Q, Zhang J, Zhou L, Zhang W, Chua B, et al. The protein phosphatase 1 complex is a direct target of AKT that links insulin signaling to hepatic glycogen deposition. Cell Rep. 2019;28:3406–22.e7.

    Article  CAS  PubMed  Google Scholar 

  45. Chen R, Rato C, Yan Y, Crespillo-Casado A, Clarke HJ, Harding HP, et al. G-actin provides substrate-specificity to eukaryotic initiation factor 2α holophosphatases. Elife. 2015;4:e04871.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reid DW, Tay AS, Sundaram JR, Lee IC, Chen Q, George SE, et al. Complementary roles of GADD34- and CReP-containing eukaryotic initiation factor 2α phosphatases during the unfolded protein response. Mol Cell Biol. 2016;36:1868–80.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7:880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Novoa I, Zeng H, Harding HP, Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol. 2001;153:1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, et al. Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol. 2003;163:767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr. 2019;64:1–12.

    Article  CAS  PubMed  Google Scholar 

  51. Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol. 2004;167:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Palam LR, Baird TD, Wek RC. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem. 2011;286:10939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving stress: modulation of ATF4-Mediated stress responses in normal and malignant cells. Trends Endocrinol Metab. 2017;28:794–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forsström S, Jackson CB, Carroll CJ, Kuronen M, Pirinen E, Pradhan S, et al. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metab. 2019;30:1040–54.e7.

    Article  PubMed  Google Scholar 

  55. Lin CC, Ding CC, Sun T, Wu J, Chen KY, Zhou P, et al. The regulation of ferroptosis by MESH1 through the activation of the integrative stress response. Cell Death Dis. 2021;12:727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, et al. ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat Commun. 2020;11:5594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zielke S, Kardo S, Zein L, Mari M, Covarrubias-Pinto A, Kinzler MN, et al. ATF4 links ER stress with reticulophagy in glioblastoma cells. Autophagy. 2021;17:2432–48.

    Article  CAS  PubMed  Google Scholar 

  58. Torrence ME, MacArthur MR, Hosios AM, Valvezan AJ, Asara JM, Mitchell JR, et al. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. Elife. 2021;10:e63326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wengrod JC, Gardner LB. Cellular adaptation to nutrient deprivation: crosstalk between the mTORC1 and eIF2α signaling pathways and implications for autophagy. Cell Cycle. 2015;14:2571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife. 2015;4:e05033.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nikonorova IA, Mirek ET, Signore CC, Goudie MP, Wek RC, Anthony TG. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. J Biol Chem. 2018;293:5005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen JJ, Zhang S. Heme-regulated eIF2α kinase in erythropoiesis and hemoglobinopathies. Blood. 2019;134:1697–707.

    Article  PubMed  PubMed Central  Google Scholar 

  63. van Galen P, Mbong N, Kreso A, Schoof EM, Wagenblast E, Ng SWK, et al. Integrated stress response activity marks stem cells in normal hematopoiesis and leukemia. Cell Rep. 2018;25:1109–17.e5.

    Article  PubMed  Google Scholar 

  64. Hu X, Guo F. Amino acid sensing in metabolic homeostasis and health. Endocr Rev. 2021;42:56–76.

    Article  PubMed  Google Scholar 

  65. Bonner ER, Waszak SM, Grotzer MA, Mueller S, Nazarian J. Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro Oncol. 2021;23:542–56.

    Article  CAS  PubMed  Google Scholar 

  66. Ishizawa J, Kojima K, Chachad D, Ruvolo P, Ruvolo V, Jacamo RO, et al. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies. Sci Signal. 2016;9:ra17.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Khan NA, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S, et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 2017;26:419–28.e5.

    Article  CAS  PubMed  Google Scholar 

  68. Averous J, Lambert-Langlais S, Mesclon F, Carraro V, Parry L, Jousse C, et al. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Sci Rep. 2016;6:27698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Al-Baghdadi RJT, Nikonorova IA, Mirek ET, Wang Y, Park J, Belden WJ, et al. Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase. Sci Rep. 2017;7:1272.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mick E, Titov DV, Skinner OS, Sharma R, Jourdain AA, Mootha VK. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. Elife. 2020;9:e49178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J. 2022;289:6994–7013.

    Article  CAS  PubMed  Google Scholar 

  73. Wardelmann K, Blumel S, Rath M, Alfine E, Chudoba C, Schell M, et al. Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Mol Metab. 2019;21:68–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol. 2016;26:2037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Münch C, Harper JW. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature. 2016;534:710–3.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife. 2016;5:e10575.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Quirós PM, Prado MA, Zamboni N, D’Amico D, Williams RW, Finley D, et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol. 2017;216:2027–45.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Suomalainen A, Battersby BJ. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol. 2018;19:77–92.

    Article  CAS  PubMed  Google Scholar 

  79. McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS. NAD+ regeneration rescues lllifespan, but not ataxia, in a mouse model of brain mitochondrial complex I dysfunction. Cell Metab. 2020;32:301–8.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu S, Fu S, Wang G, Cao Y, Li L, Li X, et al. Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD+ to alleviate mitochondrial disease. Cell Metab. 2021;33:1974–87.e9.

    Article  CAS  PubMed  Google Scholar 

  81. Gundu C, Arruri VK, Sherkhane B, Khatri DK, Singh SB. GSK2606414 attenuates PERK/p-eIF2α/ATF4/CHOP axis and augments mitochondrial function to mitigate high glucose induced neurotoxicity in N2A cells. Curr Res Pharmacol Drug Discov. 2022;3:100087.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Baker MJ, Tatsuta T, Langer T. Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol. 2011;3:a007559.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hamon MP, Bulteau AL, Friguet B. Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev. 2015;23:56–66.

    Article  CAS  PubMed  Google Scholar 

  84. Sabnis AJ, Guerriero CJ, Olivas V, Sayana A, Shue J, Flanagan J, et al. Combined chemical-genetic approach identifies cytosolic HSP70 dependence in rhabdomyosarcoma. Proc Natl Acad Sci USA. 2016;113:9015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, et al. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ. 2020;27:587–600.

    Article  CAS  PubMed  Google Scholar 

  86. Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Matsushima Y, Takahashi K, Yue S, Fujiyoshi Y, Yoshioka H, Aihara M, et al. Mitochondrial Lon protease is a gatekeeper for proteins newly imported into the matrix. Commun Biol. 2021;4:974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bender T, Leidhold C, Ruppert T, Franken S, Voos W. The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics. 2010;10:1426–43.

    Article  CAS  PubMed  Google Scholar 

  89. Gibellini L, De Gaetano A, Mandrioli M, Van Tongeren E, Bortolotti CA, Cossarizza A, et al. The biology of Lonp1: More than a mitochondrial protease. Int Rev Cell Mol Biol. 2020;354:1–61.

    Article  CAS  PubMed  Google Scholar 

  90. Huang S, Wang X, Yu J, Tian Y, Yang C, Chen Y, et al. LonP1 regulates mitochondrial network remodeling through the PINK1/Parkin pathway during myoblast differentiation. Am J Physiol Cell Physiol. 2020;319:C1020–c8.

    Article  CAS  PubMed  Google Scholar 

  91. Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy. 2013;9:1750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Quirós PM, Español Y, Acín-Pérez R, Rodríguez F, Bárcena C, Watanabe K, et al. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep. 2014;8:542–56.

    Article  PubMed  Google Scholar 

  93. Zurita Rendón O, Shoubridge EA. LONP1 is required for maturation of a subset of mitochondrial proteins, and its loss elicits an integrated stress response. Mol Cell Biol. 2018;38:e00412–17.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kao TY, Chiu YC, Fang WC, Cheng CW, Kuo CY, Juan HF, et al. Mitochondrial lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis. 2015;6:e1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nagiah S, Phulukdaree A, Chuturgoon AA. Lon protease and eiF2α are involved in acute, but not prolonged, antiretroviral induced stress response in HepG2 cells. Chem Biol Interact. 2016;252:82–6.

    Article  CAS  PubMed  Google Scholar 

  96. Shin CS, Meng S, Garbis SD, Moradian A, Taylor RW, Sweredoski MJ, et al. LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding. Nat Commun. 2021;12:265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hori O, Ichinoda F, Tamatani T, Yamaguchi A, Sato N, Ozawa K, et al. Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol. 2002;157:1151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Onat UI, Yildirim AD, Tufanli Ö, Çimen I, Kocatürk B, Veli Z, et al. Intercepting the lipid-induced integrated stress response reduces atherosclerosis. J Am Coll Cardiol. 2019;73:1149–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baker TA, Sauer RT. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta. 2012;1823:15–28.

    Article  CAS  PubMed  Google Scholar 

  100. Gispert S, Parganlija D, Klinkenberg M, Dröse S, Wittig I, Mittelbronn M, et al. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum Mol Genet. 2013;22:4871–87.

    Article  CAS  PubMed  Google Scholar 

  101. Aldridge JE, Horibe T, Hoogenraad NJ. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS One. 2007;2:e874.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002;21:4411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haynes CM, Ron D. The mitochondrial UPR-protecting organelle protein homeostasis. J Cell Sci. 2010;123:3849–55.

    Article  CAS  PubMed  Google Scholar 

  104. Bezawork-Geleta A, Brodie EJ, Dougan DA, Truscott KN. LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep. 2015;5:17397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rasola A, Neckers L, Picard D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells. Trends Cell Biol. 2014;24:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Amoroso MR, Matassa DS, Laudiero G, Egorova AV, Polishchuk RS, Maddalena F, et al. TRAP1 and the proteasome regulatory particle TBP7/Rpt3 interact in the endoplasmic reticulum and control cellular ubiquitination of specific mitochondrial proteins. Cell Death Differ. 2012;19:592–604.

    Article  CAS  PubMed  Google Scholar 

  107. Seo JH, Rivadeneira DB, Caino MC, Chae YC, Speicher DW, Tang HY, et al. The Mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis. PLoS Biol. 2016;14:e1002507.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Matassa DS, Amoroso MR, Agliarulo I, Maddalena F, Sisinni L, Paladino S, et al. Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1. Cell Death Dis. 2013;4:e851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155:160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baker MJ, Lampe PA, Stojanovski D, Korwitz A, Anand R, Tatsuta T, et al. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 2014;33:578–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bohovych I, Kastora S, Christianson S, Topil D, Kim H, Fangman T, et al. Oma1 links mitochondrial protein quality control and TOR signaling to modulate physiological plasticity and cellular stress responses. Mol Cell Biol. 2016;36:2300–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M, et al. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 2015;21:834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harada T, Iwai A, Miyazaki T. Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction. Apoptosis. 2010;15:1247–55.

    Article  CAS  PubMed  Google Scholar 

  114. Alavi MV. OMA1 high-throughput screen reveals protease activation by kinase inhibitors. ACS Chem Biol. 2021;16:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fessler E, Eckl EM, Schmitt S, Mancilla IA, Meyer-Bender MF, Hanf M, et al. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature. 2020;579:433–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bhola PD, Letai A. Mitochondria-judges and executioners of cell death sentences. Mol Cell. 2016;61:695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ichim G, Tait SW. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer. 2016;16:539–48.

    Article  CAS  PubMed  Google Scholar 

  118. Kalkavan H, Chen MJ, Crawford JC, Quarato G, Fitzgerald P, Tait SWG, et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell. 2022;185:3356–74.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Picard M, Shirihai OS. Mitochondrial signal transduction. Cell Metab. 2022;34:1620–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kang SG, Choi MJ, Jung SB, Chung HK, Chang JY, Kim JT, et al. Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response. iScience. 2021;24:102181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ost M, Coleman V, Voigt A, van Schothorst EM, Keipert S, van der Stelt I, et al. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab. 2016;5:79–90.

    Article  CAS  PubMed  Google Scholar 

  122. Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2013;19:83–92.

    Article  CAS  PubMed  Google Scholar 

  123. Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion. 2015;20:34–42.

    Article  CAS  PubMed  Google Scholar 

  124. Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol. 2017;216:149–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miyake M, Zhang J, Yasue A, Hisanaga S, Tsugawa K, Sakaue H, et al. Integrated stress response regulates GDF15 secretion from adipocytes, preferentially suppresses appetite for a high-fat diet and improves obesity. iScience. 2021;24:103448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article  CAS  PubMed  Google Scholar 

  127. Zhao Y, Cao Q, He Y, Xue Q, Xie L, Yan Y. Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR. Environ Pollut. 2017;223:587–94.

    Article  CAS  PubMed  Google Scholar 

  128. Tian X, Zhang S, Zhou L, Seyhan AA, Hernandez Borrero L, Zhang Y, et al. Targeting the integrated stress response in cancer therapy. Front Pharmacol. 2021;12:747837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P. Endoplasmic reticulum stress and eIF2α phosphorylation: the Achilles heel of pancreatic β cells. Mol Metab. 2017;6:1024–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gonzalez-Teuber V, Albert-Gasco H, Auyeung VC, Papa FR, Mallucci GR, Hetz C. Small molecules to improve ER proteostasis in disease. Trends Pharmacol Sci. 2019;40:684–95.

    Article  CAS  PubMed  Google Scholar 

  131. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 2011;22:4390–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abdel-Nour M, Carneiro LAM, Downey J, Tsalikis J, Outlioua A, Prescott D, et al. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science. 2019;365:eaaw4144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gao J, Gao A, Liu W, Chen L. Golgi stress response: A regulatory mechanism of Golgi function. Biofactors. 2021;47:964–74.

    Article  CAS  PubMed  Google Scholar 

  134. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol. 2011;54:795–809.

    Article  CAS  PubMed  Google Scholar 

  135. Sbodio JI, Snyder SH, Paul BD. Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease. Proc Natl Acad Sci USA. 2018;115:780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang Y, Wang Y, Read E, Fu M, Pei Y, Wu L, et al. Golgi stress response, hydrogen sulfide metabolism, and intracellular calcium homeostasis. Antioxid Redox Signal. 2020;32:583–601.

    Article  CAS  PubMed  Google Scholar 

  137. Sharma R, Quilty F, Gilmer JF, Long A, Byrne AM. Unconjugated secondary bile acids activate the unfolded protein response and induce golgi fragmentation via a src-kinase-dependant mechanism. Oncotarget. 2017;8:967–78.

    Article  PubMed  Google Scholar 

  138. Cerrato G, Kepp O, Sauvat A, Kroemer G. A genome-wide RNA interference screen disentangles the Golgi tropism of LC3. Autophagy. 2021;17:820–2.

    Article  CAS  PubMed  Google Scholar 

  139. McCaughey J, Stephens DJ. ER-to-Golgi Transport: A sizeable problem. Trends Cell Biol. 2019;29:940–53.

    Article  CAS  PubMed  Google Scholar 

  140. Zhang M, Liu L, Lin X, Wang Y, Li Y, Guo Q, et al. A Translocation pathway for vesicle-mediated unconventional protein secretion. Cell. 2020;181:637–52.e15.

    Article  CAS  PubMed  Google Scholar 

  141. Li W, Zhu J, Dou J, She H, Tao K, Xu H, et al. Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun. 2017;8:1763.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mujcic H, Rzymski T, Rouschop KM, Koritzinsky M, Milani M, Harris AL, et al. Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother Oncol. 2009;92:450–9.

    Article  CAS  PubMed  Google Scholar 

  143. Burton TD, Fedele AO, Xie J, Sandeman LY, Proud CG. The gene for the lysosomal protein LAMP3 is a direct target of the transcription factor ATF4. J Biol Chem. 2020;295:7418–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gambardella G, Staiano L, Moretti MN, De Cegli R, Fagnocchi L, Di Tullio G, et al. GADD34 is a modulator of autophagy during starvation. Sci Adv. 2020;6:eabb0205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ghadge GD, Sonobe Y, Camarena A, Drigotas C, Rigo F, Ling KK, et al. Knockdown of GADD34 in neonatal mutant SOD1 mice ameliorates ALS. Neurobiol Dis. 2020;136:104702.

    Article  CAS  PubMed  Google Scholar 

  146. Vanhoutte D, Schips TG, Vo A, Grimes KM, Baldwin TA, Brody MJ, et al. Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nat Commun. 2021;12:3928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jiang Q, Li F, Shi K, Wu P, An J, Yang Y, et al. Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/eIF2α/ATF4 axis in selenite-treated NB4 cells. Cell Death Dis. 2014;5:e1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Page AB, Owen CR, Kumar R, Miller JM, Rafols JA, White BC, et al. Persistent eIF2alpha(P) is colocalized with cytoplasmic cytochrome c in vulnerable hippocampal neurons after 4 h of reperfusion following 10-minute complete brain ischemia. Acta Neuropathol. 2003;106:8–16.

    Article  CAS  PubMed  Google Scholar 

  149. Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science. 2014;345:98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Almeida LM, Pinho BR, Duchen MR, Oliveira JMA. The PERKs of mitochondria protection during stress: insights for PERK modulation in neurodegenerative and metabolic diseases. Biol Rev Camb Philos Soc. 2022;97:1737–48.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang R, Qin X, Yang Y, Zhu X, Zhao S, Zhang Z, et al. STING1 is essential for an RNA-virus triggered autophagy. Autophagy. 2022;18:816–28.

    Article  CAS  PubMed  Google Scholar 

  152. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl) phenyl] acetyl}-2, 3-dihydro-1 H-indol-5-yl)-7 H-pyrrolo [2, 3-d] pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012;55:7193–207.

    Article  CAS  PubMed  Google Scholar 

  153. Harding HP, Zyryanova AF, Ron DJ. Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK. J Biol Chem. 2012;287:44338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ghaddar N, Wang S, Woodvine B, Krishnamoorthy J, van Hoef V, Darini C, et al. The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nat Commun. 2021;12:4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nagasawa I, Kunimasa K, Tsukahara S, Tomida A. BRAF-mutated cells activate GCN2-mediated integrated stress response as a cytoprotective mechanism in response to vemurafenib. Biochem Biophys Res Commun. 2017;482:1491–7.

    Article  CAS  PubMed  Google Scholar 

  156. Sekine Y, Zyryanova A, Crespillo-Casado A, Fischer PM, Harding HP, Ron D. Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science. 2015;348:1027–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. Elife. 2015;4:e07314.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Tsai JC, Miller-Vedam LE, Anand AA, Jaishankar P, Nguyen HC, Renslo AR, et al. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule. Science. 2018;359:eaaq0939.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zyryanova AF, Weis F, Faille A, Alard AA, Crespillo-Casado A, Sekine Y, et al. Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science. 2018;359:1533–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zyryanova AF, Kashiwagi K, Rato C, Harding HP, Crespillo-Casado A, Perera LA, et al. ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B. Mol Cell. 2021;81:88–103.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife. 2013;2:e00498.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sekine Y, Zyryanova A, Crespillo-Casado A, Fischer PM, Harding HP, Ron DJS. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science. 2015;348:1027–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zyryanova AF, Weis F, Faille A, et al. Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science. 2018;359:1533–6.

  164. Rabouw HH, Langereis MA, Anand AA, Visser LJ, de Groot RJ, Walter P, et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci USA. 2019;116:2097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 2015;6:e1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bugallo R, Marlin E, Baltanás A, Toledo E, Ferrero R, Vinueza-Gavilanes R, et al. Fine tuning of the unfolded protein response by ISRIB improves neuronal survival in a model of amyotrophic lateral sclerosis. Cell Death Dis. 2020;11:397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Stockwell SR, Platt G, Barrie SE, Zoumpoulidou G, Te Poele RH, Aherne GW, et al. Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS One. 2012;7:e28568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tsaytler P, Harding HP, Ron D, Bertolotti AJS. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91–4.

    Article  CAS  PubMed  Google Scholar 

  169. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D’Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307:935–9.

    Article  CAS  PubMed  Google Scholar 

  171. Chen MC, Hsu LL, Wang SF, Pan YL, Lo JF, Yeh TS, et al. Salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress. Biomedicines. 2021;9:1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li J, Li X, Liu D, Zhang S, Tan N, Yokota H, et al. Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner. Cell Death Dis. 2020;11:1069.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Li J, Li X, Liu D, Hamamura K, Wan Q, Na S, et al. eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice. Cell Death Dis. 2019;10:921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Walker BR, Hare LE, Deitch MW. Comparative antihypertensive effects of guanabenz and clonidine. J Int Med Res. 1982;10:6–14.

    Article  CAS  PubMed  Google Scholar 

  175. Shah RS, Walker BR, Vanov SK, Helfant RH. Guanabenz effects on blood pressure and noninvasive parameters of cardiac performance in patients with hypertension. Clin Pharmacol Ther. 1976;19:732–7.

    Article  CAS  PubMed  Google Scholar 

  176. Kotańska M, Knutelska J, Nicosia N, Mika K, Szafarz M. Guanabenz—an old drug with a potential to decrease obesity. Naunyn Schmiedebergs Arch Pharmacol. 2022;395:963–74.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Meacham RH, Ruelius HW, Kick CJ, Peters JR, Kocmund SM, Sisenwine SF, et al. Relationship of guanabenz concentrations in brain and plasma to antihypertensive effect in the spontaneously hypertensive rat. J Pharmacol Exp Ther. 1980;214:594–8.

    CAS  PubMed  Google Scholar 

  178. Romero-Ramírez L, Nieto-Sampedro M, Barreda-Manso MA. Integrated stress response as a therapeutic target for CNS injuries. Biomed Res Int. 2017;2017:6953156.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Crespillo-Casado A, Chambers JE, Fischer PM, Marciniak SJ, Ron D. PPP1R15A-mediated dephosphorylation of eIF2α is unaffected by Sephin1 or Guanabenz. Elife. 2017;6:e26109.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Bollen M, Peti W, Ragusa MJ, Beullens M. The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci. 2010;35:450–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nakagawa T, Ohta K. Quercetin Regulates the integrated stress response to improve memory. Int J Mol Sci. 2019;20:2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gurzeler LA, Ziegelmüller J, Mühlemann O, Karousis ED. Production of human translation-competent lysates using dual centrifugation. RNA Biol. 2022;19:78–88.

    Article  CAS  PubMed  Google Scholar 

  183. Nan J, Nan C, Ye J, Qian L, Geng Y, Xing D, et al. EGCG protects cardiomyocytes against hypoxia-reperfusion injury through inhibition of OMA1 activation. J Cell Sci. 2019;132:jcs220871.

    CAS  PubMed  Google Scholar 

  184. Wong YL, LeBon L, Basso AM, Kohlhaas KL, Nikkel AL, Robb HM, et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. Elife. 2019;8:e42940.

    Article  PubMed  PubMed Central  Google Scholar 

  185. De Gassart A, Bujisic B, Zaffalon L, Decosterd LA, Di Micco A, Frera G, et al. An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response. Proc Natl Acad Sci USA. 2016;113:E117–26.

    Article  PubMed  Google Scholar 

  186. Hughes D, Mallucci GR. The unfolded protein response in neurodegenerative disorders–therapeutic modulation of the PERK pathway. FEBS J. 2019;286:342–55. JTFj

    Article  CAS  PubMed  Google Scholar 

  187. Zhang G, Wang X, Rothermel BA, Lavandero S, Wang ZV. The integrated stress response in ischemic diseases. Cell Death Differ. 2022;29:750–7.

    Article  CAS  PubMed  Google Scholar 

  188. Wang YC, Li X, Shen Y, Lyu J, Sheng H, Paschen W, et al. PERK (Protein Kinase RNA-Like ER Kinase) branch of the unfolded protein response confers neuroprotection in ischemic stroke by suppressing protein synthesis. Stroke. 2020;51:1570–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang G, Wang X, Li C, Li Q, An YA, Luo X, et al. Integrated stress response couples mitochondrial protein translation with oxidative stress control. Circulation. 2021;144:1500–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Li Y, Ruan DY, Jia CC, Zheng J, Wang GY, Zhao H, et al. Aging aggravates hepatic ischemia-reperfusion injury in mice by impairing mitophagy with the involvement of the EIF2α-parkin pathway. Aging (Albany NY). 2018;10:1902–20.

    Article  CAS  PubMed  Google Scholar 

  191. Santos CX, Hafstad AD, Beretta M, Zhang M, Molenaar C, Kopec J, et al. Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2α-mediated stress signaling. Embo J. 2016;35:319–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sciarretta S, Zhai P, Shao D, Zablocki D, Nagarajan N, Terada LS, et al. Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 pathway. Circ Res. 2013;113:1253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cai W, Sun X, Jin F, Xiao D, Li H, Sun H, et al. PERK-eIF2α-ERK1/2 axis drives mesenchymal-endothelial transition of cancer-associated fibroblasts in pancreatic cancer. Cancer Lett. 2021;515:86–95.

    Article  CAS  PubMed  Google Scholar 

  194. Pu Y, Wu D, Lu X, Yang L. Effects of GCN2/eIF2α on myocardial ischemia/hypoxia reperfusion and myocardial cells injury. Am J Transl Res. 2019;11:5586–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Yu L, Li B, Zhang M, Jin Z, Duan W, Zhao G, et al. Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia-reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis. 2016;21:809–24.

    Article  CAS  PubMed  Google Scholar 

  196. Emam AM, Saad MA, Ahmed NA, Zaki HF. Vortioxetine mitigates neuronal damage by restricting PERK/eIF2α/ATF4/CHOP signaling pathway in rats subjected to focal cerebral ischemia-reperfusion. Life Sci. 2021;283:119865.

    Article  CAS  PubMed  Google Scholar 

  197. Yang T, He R, Li G, Liang J, Zhao L, Zhao X, et al. Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes. Neurosci Lett. 2021;758:136004.

    Article  CAS  PubMed  Google Scholar 

  198. Zhu PJ, Khatiwada S, Cui Y, Reineke LC, Dooling SW, Kim JJ, et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science. 2019;366:843–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kabir ZD, Che A, Fischer DK, Rice RC, Rizzo BK, Byrne M, et al. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α. Mol Psychiatry. 2017;22:1096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Young-Baird SK, Lourenço MB, Elder MK, Klann E, Liebau S, Dever TE. Suppression of MEHMO syndrome mutation in eIF2 by small molecule ISRIB. Mol Cell. 2020;77:875–86.e7.

    Article  CAS  PubMed  Google Scholar 

  201. Chou A, Krukowski K, Jopson T, Zhu PJ, Costa-Mattioli M, Walter P, et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc Natl Acad Sci USA. 2017;114:E6420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Krukowski K, Nolan A, Frias ES, Boone M, Ureta G, Grue K, et al. Small molecule cognitive enhancer reverses age-related memory decline in mice. Elife. 2020;9:e62048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Oliveira MM, Lourenco MV, Longo F, Kasica NP, Yang W, Ureta G, et al. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer’s disease. Sci Signal. 2021;14:eabc5429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Dominguez-Bautista JA, Klinkenberg M, Brehm N, Subramaniam M, Kern B, Roeper J, et al. Loss of lysosome-associated membrane protein 3 (LAMP3) enhances cellular vulnerability against proteasomal inhibition. Eur J Cell Biol. 2015;94:148–61.

    Article  CAS  PubMed  Google Scholar 

  205. Nagelkerke A, Bussink J, van der Kogel AJ, Sweep FC, Span PN. The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response. Radiother Oncol. 2013;108:415–21.

    Article  CAS  PubMed  Google Scholar 

  206. Bai X, Ni J, Beretov J, Wasinger VC, Wang S, Zhu Y, et al. Activation of the eIF2α/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis. Redox Biol. 2021;43:101993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jewer M, Lee L, Leibovitch M, Zhang G, Liu J, Findlay SD, et al. Translational control of breast cancer plasticity. Nat Commun. 2020;11:2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Nguyen HG, Conn CS, Kye Y, Xue L, Forester CM, Cowan JE, et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci Transl Med. 2018;10:eaar2036.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, et al. Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell. 2019;35:721–37.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang J, Luo B, Sui J, Qiu Z, Huang J, Yang T, et al. IMP075 targeting ClpP for colon cancer therapy in vivo and in vitro. Biochem Pharmacol. 2022;204:115232.

    Article  CAS  PubMed  Google Scholar 

  211. Lim B, Peterson CB, Davis A, Cho E, Pearson T, Liu H, et al. ONC201 and an MEK inhibitor trametinib synergistically inhibit the growth of triple-negative breast cancer cells. Biomedicines. 2021;9:1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fan Y, Wang J, Fang Z, Pierce SR, West L, Staley A, et al. Anti-tumor and anti-invasive effects of ONC201 on ovarian cancer cells and a transgenic mouse model of serous ovarian cancer. Front Oncol. 2022;12:789450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jin ZZ, Wang W, Fang DL, Jin YJ. mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity. Biochem Biophys Res Commun. 2016;478:1515–20.

    Article  CAS  PubMed  Google Scholar 

  214. Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, et al. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia. 2020;22:725–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Xu X, Krumm C, So JS, Bare CJ, Holman C, Gromada J, et al. Preemptive activation of the integrated stress response protects mice from diet-induced obesity and insulin resistance by fibroblast growth factor 21 induction. Hepatology. 2018;68:2167–81.

    Article  CAS  PubMed  Google Scholar 

  216. Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, et al. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol. 2016;65:929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hiller H, Beachy DE, Lebowitz JJ, Engler S, Mason JR, Miller DR, et al. Monogenic diabetes and integrated stress response genes display altered gene expression in type 1 diabetes. Diabetes. 2021;70:1885–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chen JJ. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood. 2007;109:2693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hahn CK, Lowrey CH. Eukaryotic initiation factor 2α phosphorylation mediates fetal hemoglobin induction through a post-transcriptional mechanism. Blood. 2013;122:477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lopez NH, Li B, Palani C, Siddaramappa U, Takezaki M, Xu H, et al. Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice. PLoS One. 2022;17:e0261799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Davidson S, Yu CH, Steiner A, Ebstein F, Baker PJ, Jarur-Chamy V, et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci Immunol. 2022;7:eabi6763.

    Article  CAS  PubMed  Google Scholar 

  222. Zhu J, Chen S, Sun LQ, Liu S, Bai X, Li D, et al. LincRNA-EPS impairs host antiviral immunity by antagonizing viral RNA-PKR interaction. EMBO Rep. 2022;23:e53937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bhattacharya B, Xiao S, Chatterjee S, Urbanowski M, Ordonez A, Ihms EA, et al. The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. J Clin Invest. 2021;131:e130319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Daito T, Watashi K, Sluder A, Ohashi H, Nakajima S, Borroto-Esoda K, et al. Cyclophilin inhibitors reduce phosphorylation of RNA-dependent protein kinase to restore expression of IFN-stimulated genes in HCV-infected cells. Gastroenterology. 2014;147:463–72.

    Article  CAS  PubMed  Google Scholar 

  225. Xia X, Lei L, Qin W, Wang L, Zhang G, Hu J. GCN2 controls the cellular checkpoint: potential target for regulating inflammation. Cell Death Discov. 2018;4:20.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Ravindran R, Loebbermann J, Nakaya HI, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ravishankar B, Liu H, Shinde R, Chaudhary K, Xiao W, Bradley J, et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc Natl Acad Sci USA. 2015;112:10774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Wang P, Xu Y, Zhang J, Shi L, Lei T, Hou Y, et al. The amino acid sensor general control nonderepressible 2 (GCN2) controls T(H)9 cells and allergic airway inflammation. J Allergy Clin Immunol. 2019;144:1091–105.

    Article  CAS  PubMed  Google Scholar 

  229. Philips AM, Khan N. Amino acid sensing pathway: A major check point in the pathogenesis of obesity and COVID-19. Obes Rev. 2021;22:e13221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana JJ, et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021;33:1577–91.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Leegwater PA, Vermeulen G, Könst AA, Naidu S, Mulders J, Visser A, et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat Genet. 2001;29:383–8.

    Article  CAS  PubMed  Google Scholar 

  232. Schiffmann R, Elroy-Stein O. Childhood ataxia with CNS hypomyelination/vanishing white matter disease–a common leukodystrophy caused by abnormal control of protein synthesis. Mol Genet Metab. 2006;88:7–15.

    Article  CAS  PubMed  Google Scholar 

  233. Fogli A, Schiffmann R, Hugendubler L, Combes P, Bertini E, Rodriguez D, et al. Decreased guanine nucleotide exchange factor activity in eIF2B-mutated patients. Eur J Hum Genet. 2004;12:561–6.

    Article  CAS  PubMed  Google Scholar 

  234. Moon SL, Parker R. EIF2B2 mutations in vanishing white matter disease hypersuppress translation and delay recovery during the integrated stress response. RNA. 2018;24:841–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Fogli A, Rodriguez D, Eymard-Pierre E, Bouhour F, Labauge P, Meaney BF, et al. Ovarian failure related to eukaryotic initiation factor 2B mutations. Am J Hum Genet. 2003;72:1544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Abbink TEM, Wisse LE, Jaku E, Thiecke MJ, Voltolini-González D, Fritsen H, et al. Vanishing white matter: deregulated integrated stress response as therapy target. Ann Clin Transl Neurol. 2019;6:1407–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wang C, Tan Z, Niu B, Tsang KY, Tai A, Chan WCW, et al. Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. Elife. 2018;7:e37673.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Watanabe S, Markov NS, Lu Z, Piseaux Aillon R, Soberanes S, Runyan CE, et al. Resetting proteostasis with ISRIB promotes epithelial differentiation to attenuate pulmonary fibrosis. Proc Natl Acad Sci USA. 2021;118:e2101100118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhang J, Wei Y, Qu T, Wang Z, Xu S, Peng X, et al. Prosurvival roles mediated by the PERK signaling pathway effectively prevent excessive endoplasmic reticulum stress-induced skeletal muscle loss during high-stress conditions of hibernation. J Cell Physiol. 2019;234:19728–39.

    Article  CAS  PubMed  Google Scholar 

  240. Liu D, Zhang Y, Li X, Li J, Yang S, Xing X, et al. eIF2α signaling regulates ischemic osteonecrosis through endoplasmic reticulum stress. Sci Rep. 2017;7:5062.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Zhang D, Liu Y, Zhu Y, Zhang Q, Guan H, Liu S, et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol. 2022;24:766–82.

    Article  CAS  PubMed  Google Scholar 

  242. Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, et al. The eIF2α kinase GCN2 modulates period and rhythmicity of the circadian clock by translational control of Atf4. Neuron. 2019;104:724–35.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wong YL, LeBon L, Edalji R, Lim HB, Sun C, Sidrauski C. The small molecule ISRIB rescues the stability and activity of Vanishing White Matter Disease eIF2B mutant complexes. Elife. 2018;7:e32733.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Barua D, Gupta A, Gupta S. Targeting the IRE1-XBP1 axis to overcome endocrine resistance in breast cancer: opportunities and challenges. Cancer Lett. 2020;486:29–37.

    Article  CAS  PubMed  Google Scholar 

  245. Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol Dis. 2018;112:136–48.

    Article  CAS  PubMed  Google Scholar 

  246. Jiang X, Wei Y, Zhang T, Zhang Z, Qiu S, Zhou X, et al. Effects of GSK2606414 on cell proliferation and endoplasmic reticulum stress‑associated gene expression in retinal pigment epithelial cells. Mol Med Rep. 2017;15:3105–10.

    Article  CAS  PubMed  Google Scholar 

  247. Kim MJ, Min SH, Shin SY, Kim MN, Lee H, Jang JY, et al. Attenuation of PERK enhances glucose-stimulated insulin secretion in islets. J Endocrinol. 2017;236:125–36.

    Article  PubMed  Google Scholar 

  248. Grande V, Ornaghi F, Comerio L, Restelli E, Masone A, Corbelli A, et al. PERK inhibition delays neurodegeneration and improves motor function in a mouse model of Marinesco-Sjögren syndrome. Hum Mol Genet. 2018;27:2477–89.

    Article  CAS  PubMed  Google Scholar 

  249. Brady RD, Bird S, Sun M, Yamakawa GR, Major BP, Mychasiuk R, et al. Activation of the Protein Kinase R–Like Endoplasmic Reticulum Kinase (PERK) pathway of the unfolded protein response after experimental traumatic brain injury and treatment with a PERK inhibitor. Neurotrauma Rep. 2021;2:330–42.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Dhir N, Jain A, Sharma AR, Prakash A, Radotra BD, Medhi B. PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2ɑ/ATF4/CHOP signaling. Metab Brain Dis. 2023;38:1177–92.

    Article  CAS  PubMed  Google Scholar 

  251. Shi S, Ding C, Zhu S, Xia F, Buscho SE, Li S, et al. PERK inhibition suppresses neovascularization and protects neurons during ischemia-induced retinopathy. investigative ophthalmology visual science. Invest Ophthalmol Vis Sci. 2023;64:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zhang XH, Wang XY, Zhou ZW, Bai H, Shi L, Yang YX, et al. The combination of digoxin and GSK2606414 exerts synergistic anticancer activity against leukemia in vitro and in vivo. Biofactors. 2017;43:812–20.

    Article  CAS  PubMed  Google Scholar 

  253. Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, et al. Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updates. 2016;27:14–29.

    Article  CAS  Google Scholar 

  254. Bagratuni T, Patseas D, Mavrianou-Koutsoukou N, Liacos CI, Sklirou AD, Rousakis P, et al. Characterization of a PERK kinase inhibitor with anti-myeloma activity. Cancers. 2020;12:2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Axten JM, Romeril SP, Shu A, Ralph J, Medina JR, Feng Y, et al. Discovery of GSK2656157: an optimized PERK inhibitor selected for preclinical development. ACS Med Chem Lett. 2013;4:964–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Saraswat Ohri S, Andres KR, Howard RM, Brown BL, Forston MD, Hetman M, et al. Acute pharmacological inhibition of protein kinase R-Like endoplasmic reticulum kinase signaling after spinal cord injury spares oligodendrocytes and improves locomotor recovery. J Neurotrauma. 2023;40:1007–19.

    Article  PubMed  Google Scholar 

  257. Sen T, Gupta R, Kaiser H, Sen N. Activation of PERK elicits memory impairment through inactivation of CREB and downregulation of PSD95 after traumatic brain injury. J Neurosci. 2017;37:5900–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Vandewynckel Y-P, Laukens D, Bogaerts E, Paridaens A, Van den Bussche A, Verhelst X, et al. Modulation of the unfolded protein response impedes tumor cell adaptation to proteotoxic stress: a PERK for hepatocellular carcinoma therapy. Hepatol Int. 2015;9:93–104.

    Article  PubMed  Google Scholar 

  259. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, et al. ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest. 2012;122:4621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Xie H, Tang C-HA, Song JH, Mancuso A, Del Valle JR, Cao J, et al. IRE1α RNase–dependent lipid homeostasis promotes survival in Myc-transformed cancers. J Clin Invest. 2018;128:1300–16.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Ri M, Tashiro E, Oikawa D, Shinjo S, Tokuda M, Yokouchi Y, et al. Identification of toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood cancer J. 2012;2:e79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013;73:1993–2002.

    Article  CAS  PubMed  Google Scholar 

  263. Loeuillard E, El Mourabit H, Lei L, Lemoinne S, Housset C, Cadoret A. Endoplasmic reticulum stress induces inverse regulations of major functions in portal myofibroblasts during liver fibrosis progression. Biochim Biophys Acta Mol Basis Dis. 2018;1864:3688–96.

    Article  CAS  PubMed  Google Scholar 

  264. Shi Z, Yu X, Yuan M, Lv W, Feng T, Bai R, et al. Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci Rep. 2019;9:3210.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Bruch J, Xu H, Rösler TW, De Andrade A, Kuhn PH, Lichtenthaler SF, et al. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol Med. 2017;9:371–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Yoon L, Botham RC, Verhelle A, Cole C, Tan EP, Wu Y, et al. mTOR inhibitor-independent autophagy activator ameliorates tauopathy and prionopathy neurodegeneration phenotypes. bioRxiv. 2022: 2022.09. 29.509997.

  267. Ganz J, Shacham T, Kramer M, Shenkman M, Eiger H, Weinberg N, et al. A novel specific PERK activator reduces toxicity and extends survival in Huntington’s disease models. Sci Rep. 2020;10:6875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Almeida LM, Oliveira Â, Oliveira JM, Pinho BR. Stress response mechanisms in protein misfolding diseases: Profiling a cellular model of Huntington’s disease. Arch Biochem Biophys. 2023;745:109711.

    Article  CAS  PubMed  Google Scholar 

  269. Lei Y, He L, Yan C, Wang Y, Lv G. PERK activation by CCT020312 chemosensitizes colorectal cancer through inducing apoptosis regulated by ER stress. Biochem Biophys Res Commun. 2021;557:316–22.

    Article  CAS  PubMed  Google Scholar 

  270. Philippe C, Dubrac A, Quelen C, Desquesnes A, Van Den Berghe L, Ségura C, et al. PERK mediates the IRES-dependent translational activation of mRNAs encoding angiogenic growth factors after ischemic stress. Sci Signal. 2016;9:ra44–ra.

    Article  PubMed  Google Scholar 

  271. Li X, Yu X, Zhou D, Chen B, Li W, Zheng X, et al. CCT020312 inhibits triple-negative breast cancer through PERK pathway-mediated G1 phase cell cycle arrest and apoptosis. Front Pharmacol. 2020;11:737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Soni H, Bode J, Nguyen CD, Puccio L, Neßling M, Piro RM, et al. PERK-mediated expression of peptidylglycine α-amidating monooxygenase supports angiogenesis in glioblastoma. Oncogenesis. 2020;9:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Sharon D, Cathelin S, Subedi A, Williams R, Benicio M, Ketela T, et al. Targeting mitochondrial translation overcomes venetoclax resistance in acute myeloid leukemia (AML) through activation of the integrated stress response. Blood. 2017;130:297.

    Google Scholar 

  274. Zhang P, Hamamura K, Jiang C, Zhao L, Yokota H. Salubrinal promotes healing of surgical wounds in rat femurs. J Bone Min Metab. 2012;30:568–79.

    Article  Google Scholar 

  275. Rubovitch V, Barak S, Rachmany L, Goldstein RB, Zilberstein Y, Pick CG. The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury. Neuromol Med. 2015;17:58–70.

    Article  CAS  Google Scholar 

  276. Anuncibay-Soto B, Pérez-Rodríguez D, Santos-Galdiano M, Font E, Regueiro-Purriños M, Fernández-López A. Post‐ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia. J Neurochem. 2016;138:295–306.

    Article  CAS  PubMed  Google Scholar 

  277. Zhang J, Wang Y, Ju M, Song J, Zheng Y, Lin S, et al. Neuroprotective effect of the inhibitor salubrinal after cardiac arrest in a rodent model. Oxid Med Cell Longev. 2020;2020:7468738.

    PubMed  PubMed Central  Google Scholar 

  278. Huang X, Chen Y, Zhang H, Ma Q, Zhang Y-W, Xu H. Salubrinal attenuates β-amyloid-induced neuronal death and microglial activation by inhibition of the NF-κB pathway. Neurobiol Aging. 2012;33:1007.e9-.e17.

    Article  Google Scholar 

  279. Cankara FN, Kuş MS, Günaydın C, Şafak S, Bilge SS, Ozmen O, et al. The beneficial effect of salubrinal on neuroinflammation and neuronal loss in intranigral LPS-induced hemi-Parkinson disease model in rats. Immunopharmacol Immunotoxicol. 2022;44:168–77.

    Article  CAS  PubMed  Google Scholar 

  280. Wang Z-f, Gao C, Chen W, Gao Y, Wang H-c, Meng Y, et al. Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model. Neurobiol Learn Mem. 2019;161:12–25.

    Article  PubMed  Google Scholar 

  281. Alsterda A, Asha K, Powrozek O, Repak M, Goswami S, Dunn AM, et al. Salubrinal exposes anticancer properties in inflammatory breast cancer cells by manipulating the endoplasmic reticulum stress pathway. Front Oncol. 2021;11:654940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wu CT, Sheu ML, Tsai KS, Chiang CK, Liu SH. Salubrinal, an eIF2α dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radic Biol Med. 2011;51:671–80.

    Article  CAS  PubMed  Google Scholar 

  283. Lu W, Ni K, Li Z, Xiao L, Li Y, Jiang Y, et al. Salubrinal protects against cisplatin-induced cochlear hair cell endoplasmic reticulum stress by regulating eukaryotic translation initiation factor 2α signalling. Front Mol Neurosci. 2022;15:916458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. He L, Lee J, Jang JH, Sakchaisri K, Hwang J, Cha-Molstad HJ, et al. Osteoporosis regulation by salubrinal through eIF2α mediated differentiation of osteoclast and osteoblast. Cell Signal. 2013;25:552–60.

    Article  CAS  PubMed  Google Scholar 

  285. Li L, Hu G, Xie R, Yang J, Shi X, Jia Z, et al. Salubrinal-mediated activation of eIF2α signaling improves oxidative stress-induced BMSCs senescence and senile osteoporosis. Biochem Biophys Res Commun. 2022;610:70–6.

    Article  CAS  PubMed  Google Scholar 

  286. Hamamura K, Lin C-C, Yokota H. Salubrinal reduces expression and activity of MMP13 in chondrocytes. Osteoarthr Cartil. 2013;21:764–72.

    Article  CAS  Google Scholar 

  287. Hamamura K, Nishimura A, Iino T, Takigawa S, Sudo A, Yokota H. Chondroprotective effects of Salubrinal in a mouse model of osteoarthritis. Bone Jt Res. 2015;4:84–92.

    Article  CAS  Google Scholar 

  288. Yokota H, Hamamura K, Chen A, Dodge TR, Tanjung N, Abedinpoor A, et al. Effects of salubrinal on development of osteoclasts and osteoblasts from bone marrow-derived cells. BMC Musculoskelet Disord. 2013;14:1–11.

    Article  Google Scholar 

  289. Hamamura K, Chen A, Tanjung N, Takigawa S, Sudo A, Yokota H. In vitro and in silico analysis of an inhibitory mechanism of osteoclastogenesis by salubrinal and guanabenz. Cell Signal. 2015;27:353–62.

    Article  CAS  PubMed  Google Scholar 

  290. Takigawa S, Frondorf B, Liu S, Liu Y, Li B, Sudo A, et al. Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice. J Pharmacol Sci. 2016;132:154–61.

    Article  CAS  PubMed  Google Scholar 

  291. Kimura F, Miyazawa K, Hamamura K, Tabuchi M, Sato T, Asano Y, et al. Suppression of alveolar bone resorption by salubrinal in a mouse model of periodontal disease. Life Sci. 2021;284:119938.

    Article  CAS  PubMed  Google Scholar 

  292. Ji C, Yang B, Huang S-Y, Huang J-W, Cheng B. Salubrinal protects human skin fibroblasts against UVB-induced cell death by blocking endoplasmic reticulum (ER) stress and regulating calcium homeostasis. Biochem Biophys Res Commun. 2017;493:1371–6.

    Article  CAS  PubMed  Google Scholar 

  293. Balakrishnan B, Siddiqi A, Mella J, Lupo A, Li E, Hollien J, et al. Salubrinal enhances eIF2α phosphorylation and improves fertility in a mouse model of classic galactosemia. Biochim Biophys Acta Mol Basis Dis. 2019;1865:165516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Vieira FG, Ping Q, Moreno AJ, Kidd JD, Thompson K, Jiang B, et al. Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS. PLoS One. 2015;10:e0135570.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Wang L, Popko B, Tixier E, Roos RP. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis. 2014;71:317–24.

    Article  CAS  PubMed  Google Scholar 

  296. Martynowicz J, Augusto L, Wek RC, Boehm SL, Sullivan Jr WJ Guanabenz reverses a key behavioral change caused by latent toxoplasmosis in mice by reducing neuroinflammation. MBio. 2019; 10: https://doi.org/10.1128/mbio.00381-19.

  297. Singh A, Gupta P, Tiwari S, Mishra A, Singh S. Guanabenz mitigates the neuropathological alterations and cell death in Alzheimer’s disease. Cell Tissue Res. 2022;388:239–58.

    Article  CAS  PubMed  Google Scholar 

  298. Sun X, Aimé P, Dai D, Ramalingam N, Crary JF, Burke RE, et al. Guanabenz promotes neuronal survival via enhancement of ATF4 and parkin expression in models of Parkinson disease. Exp Neurol. 2018;303:95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Witkamp D, Oudejans E, Hu-A-Ng GV, Hoogterp L, Krzywańska AM, Žnidaršič M, et al. Guanabenz ameliorates disease in vanishing white matter mice in contrast to sephin1. Ann Clin Transl Neurol. 2022;9:1147–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Barbezier N, Chartier A, Bidet Y, Buttstedt A, Voisset C, Galons H, et al. Antiprion drugs 6‐aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. EMBO Mol Med. 2011;3:35–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Thompson KK, Tsirka SE. Guanabenz modulates microglia and macrophages during demyelination. Sci Rep. 2020;10:19333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Haggag YA, Yasser M, Tambuwala MM, El Tokhy SS, Isreb M, Donia AA. Repurposing of Guanabenz acetate by encapsulation into long-circulating nanopolymersomes for treatment of triple-negative breast cancer. Int J Pharm. 2021;600:120532.

    Article  CAS  PubMed  Google Scholar 

  303. Yoshino S, Iwasaki Y, Matsumoto S, Satoh T, Ozawa A, Yamada E, et al. Administration of small-molecule guanabenz acetate attenuates fatty liver and hyperglycemia associated with obesity. Sci Rep. 2020;10:13671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Benmerzouga I, Checkley LA, Ferdig MT, Arrizabalaga G, Wek RC, Sullivan WJ Jr. Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis. Antimicrob Agents Chemother. 2015;59:6939–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Muramatsu R, Sato T, Hamamura K, Miyazawa K, Takeguchi A, Tabuchi M, et al. Guanabenz inhibits alveolar bone resorption in a rat model of periodontitis. J Pharm Sci. 2021;147:294–304.

    Article  CAS  Google Scholar 

  306. Ruiz A, Zuazo J, Ortiz-Sanz C, Luchena C, Matute C, Alberdi E. Sephin1 protects neurons against excitotoxicity independently of the integrated stress response. Int J Mol Sci. 2020;21:6088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Chen Y, Podojil JR, Kunjamma RB, Jones J, Weiner M, Lin W, et al. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain. 2019;142:344–61.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Wang R, Zhang Y, Guo S, Pei S, Guo W, Wu Z, et al. Single-cell RNA sequencing reveals the suppressive effect of PPP1R15A inhibitor Sephin1 in antitumor immunity. Iscience. 2023;26:105954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Fusade-Boyer M, Dupré G, Bessière P, Khiar S, Quentin-Froignant C, Beck C, et al. Evaluation of the antiviral activity of Sephin1 treatment and its consequences on eIF2α phosphorylation in response to viral infections. Front Immunol. 2019;10:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Tsang JOL. Discovery of novel antiviral treatments and development of new antiviral platforms for enteroviruses [dissertation]. China Hongkong: Hongkong University; 2020.

  311. Stein MN, Bertino JR, Kaufman HL, Mayer T, Moss R, Silk A, et al. First-in-human clinical trial of oral ONC201 in patients with refractory solid tumors. Clin Cancer Res. 2017;23:4163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Cantor E, Wierzbicki K, Tarapore RS, Ravi K, Thomas C, Cartaxo R, et al. Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro Oncol. 2022;24:1366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Allen JE, Krigsfeld G, Patel L, Mayes PA, Dicker DT, Wu GS, et al. Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway. Mol Cancer. 2015;14:99.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Marlin E, Valencia M, Peregrín N, et al. Pharmacological inhibition of the integrated stress response accelerates disease progression in an amyotrophic lateral sclerosis mouse model. Br J Pharmacol. 2024;181:495–508.

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 82173811, 81973315), Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003), Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD) and Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Hj., Koju, N. & Sheng, R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-023-01225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-023-01225-0

Keywords

Search

Quick links