Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Desloratadine alleviates ALS-like pathology in hSOD1G93A mice via targeting 5HTR2A on activated spinal astrocytes

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg−1·d−1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease.

DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 5HTR2A was upregulated in the spinal astrocytes of hSOD1G93A mice and ALS patients.
Fig. 2: DLT delayed ALS onset time and ameliorated the dyskinesias of ALS mice through 5HTR2A.
Fig. 3: DLT protected against spinal motor neuronal damage in ALS mice through 5HTR2A.
Fig. 4: DLT promoted autophagy to clear spinal hSOD1G93A protein in ALS mice.
Fig. 5: DLT promoted autophagy to clear spinal hSOD1G93A protein through 5HTR2A/cAMP/AMPK pathway in ALS mice.
Fig. 6: DLT suppressed spinal oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway in ALS mice.
Fig. 7: DLT suppressed spinal astrocytic activation through 5HTR2A/cAMP/AMPK pathway in ALS mice.
Fig. 8: DLT suppressed spinal astrocytic NLRP3 inflammasome activation through 5HTR2A/cAMP/AMPK/NF-κB pathway in ALS mice.
Fig. 9: DLT repressed the crosstalk between spinal astrocytic neuroinflammation and neuronal damage through 5HTR2A.

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400:1363–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: an update for 2018. Mayo Clin Proc. 2018;93:1617–28.

    Article  PubMed  Google Scholar 

  3. Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9:617–28.

    Article  CAS  PubMed  Google Scholar 

  4. Cetin H, Rath J, Fuzi J, Reichardt B, Fulop G, Koppi S, et al. Epidemiology of amyotrophic lateral sclerosis and effect of riluzole on disease course. Neuroepidemiology. 2015;44:6–15.

    Article  PubMed  Google Scholar 

  5. Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2017;18:735–8.

    Article  CAS  PubMed  Google Scholar 

  6. Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 years of failure. are we any closer to registering a new treatment? Front Aging Neurosci. 2017;9:68.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sau D, De Biasi S, Vitellaro-Zuccarello L, Riso P, Guarnieri S, Porrini M, et al. Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet. 2007;16:1604–18.

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura AL, Shum C, Scotter EL, Abdelgany A, Sardone V, Wright J, et al. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS One. 2014;9:e91269.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Trist BG, Genoud S, Roudeau S, Rookyard A, Abdeen A, Cottam V, et al. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain. 2022;145:3108–30.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rudnick ND, Griffey CJ, Guarnieri P, Gerbino V, Wang X, Piersaint JA, et al. Distinct roles for motor neuron autophagy early and late in the SOD1(G93A) mouse model of ALS. Proc Natl Acad Sci USA. 2017;114:E8294–E303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Debye B, Schmulling L, Zhou L, Rune G, Beyer C, Johann S. Neurodegeneration and NLRP3 inflammasome expression in the anterior thalamus of SOD1(G93A) ALS mice. Brain Pathol. 2018;28:14–27.

    Article  CAS  PubMed  Google Scholar 

  12. Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 2018;28:3–13.

    Article  CAS  PubMed  Google Scholar 

  13. Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy. 2013;9:1308–20.

    Article  CAS  PubMed  Google Scholar 

  14. Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10:253–63.

    Article  CAS  PubMed  Google Scholar 

  15. Johann S, Heitzer M, Kanagaratnam M, Goswami A, Rizo T, Weis J, et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia. 2015;63:2260–73.

    Article  PubMed  Google Scholar 

  16. Swami M. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Med. 2011;17:1059.

    Article  Google Scholar 

  17. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dennys C, Baggio C, Rodrigo R, Roussel F, Kulinich A, Heintzman S, et al. EphA4 targeting agents protect motor neurons from cell death induced by amyotrophic lateral sclerosis -astrocytes. iScience. 2022;25:104877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mahesh G, Jaiswal P, Dey S, Sengupta J, Mukherjee S. Cloning, expression, purification and characterization of oligomeric states of the native 5HT2A G-protein-coupled receptor. Protein Pept Lett. 2018;25:390–7.

    Article  CAS  PubMed  Google Scholar 

  20. Thibault K, Van Steenwinckel J, Brisorgueil MJ, Fischer J, Hamon M, Calvino B, et al. Serotonin 5-HT2A receptor involvement and Fos expression at the spinal level in vincristine-induced neuropathy in the rat. Pain. 2008;140:305–22.

    Article  CAS  PubMed  Google Scholar 

  21. Nishiyama T. Effects of a 5-HT2A receptor antagonist, sarpogrelate on thermal or inflammatory pain. Eur J Pharmacol. 2005;516:18–22.

    Article  CAS  PubMed  Google Scholar 

  22. Wu C, Singh SK, Dias P, Kumar S, Mann DM. Activated astrocytes display increased 5-HT2a receptor expression in pathological states. Exp Neurol. 1999;158:529–33.

    Article  CAS  PubMed  Google Scholar 

  23. Fritz I, Wagner P, Broberg P, Einefors R, Olsson H. Desloratadine and loratadine stand out among common H1-antihistamines for association with improved breast cancer survival. Acta Oncol. 2020;59:1103–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lu J, Zhang C, Lv J, Zhu X, Jiang X, Lu W, et al. Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer’s disease model mice by improving microglial dysfunction. Aging Cell. 2020;20:e13286.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ionescu A, Gradus T, Altman T, Maimon R, Saraf Avraham N, Geva M, et al. Targeting the Sigma-1 receptor via pridopidine ameliorates central features of ALS pathology in a SOD1(G93A) Model. Cell Death Dis. 2019;10:210.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tsuburaya N, Homma K, Higuchi T, Balia A, Yamakoshi H, Shibata N, et al. A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nat Commun. 2018;9:2668.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee JD, Liu N, Levin SC, Ottosson L, Andersson U, Harris HE, et al. Therapeutic blockade of HMGB1 reduces early motor deficits, but not survival in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Neuroinflammation. 2019;16:45.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan H, Chen M, Pang D, Xia X, Du C, Yang W, et al. LanCL1 promotes motor neuron survival and extends the lifespan of amyotrophic lateral sclerosis mice. Cell Death Differ. 2020;27:1369–82.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu DY, Lu J, Xu R, Yang JZ, Meng XR, Ou-Yang XN, et al. FX5, a non-steroidal glucocorticoid receptor antagonist, ameliorates diabetic cognitive impairment in mice. Acta Pharmacol Sin. 2022;43:2495–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou QM, Zhang JJ, Li S, Chen S, Le WD. n-butylidenephthalide treatment prolongs life span and attenuates motor neuron loss in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. CNS Neurosci Ther. 2017;23:375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Chen S, Lu K, Wang F, Deng J, Xu Z, et al. Verapamil ameliorates motor neuron degeneration and improves lifespan in the SOD1(G93A) mouse model of ALS by enhancing autophagic flux. Aging Dis. 2019;10:1159–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bakshi R, Xu Y, Mueller KA, Chen X, Granucci E, Paganoni S, et al. Urate mitigates oxidative stress and motor neuron toxicity of astrocytes derived from ALS-linked SOD1(G93A) mutant mice. Mol Cell Neurosci. 2018;92:12–6.

    Article  CAS  PubMed  Google Scholar 

  33. Allen SP, Hall B, Castelli LM, Francis L, Woof R, Siskos AP, et al. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain. 2019;142:586–605.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, et al. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy. 2012;8:1215–26.

    Article  CAS  PubMed  Google Scholar 

  35. Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B, et al. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm (Vienna). 2015;122:1055–68.

    Article  CAS  PubMed  Google Scholar 

  36. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549:523–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen M, Xu S, Zhou P, He G, Jie Q, Wu Y. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades. Eur J Pharmacol. 2015;767:98–107.

    Article  CAS  PubMed  Google Scholar 

  38. Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta. 2006;1762:1051–67.

    Article  CAS  PubMed  Google Scholar 

  39. Bujak AL, Crane JD, Lally JS, Ford RJ, Kang SJ, Rebalka IA, et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab. 2015;21:883–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao L, Liu J, Sun Z, Yin Y, Mao Y, Xu D, et al. AMPK-dependent and -independent coordination of mitochondrial function and muscle fiber type by FNIP1. PLoS Genet. 2021;17:e1009488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312:1389–92.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Li H, Huang B, Wang S, Gao Y, Meng F, et al. Spatiotemporal evolution of pyroptosis and canonical inflammasome pathway in hSOD1(G93A) ALS mouse model. BMC Neurosci. 2022;23:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170:649–63. e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cocco S, Leone A, Roca MS, Lombardi R, Piezzo M, Caputo R, et al. Inhibition of autophagy by chloroquine prevents resistance to PI3K/AKT inhibitors and potentiates their antitumor effect in combination with paclitaxel in triple negative breast cancer models. J Transl Med. 2022;20:290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S. AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem. 2009;109:17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fox MA, French HT, LaPorte JL, Blackler AR, Murphy DL. The serotonin 5-HT(2A) receptor agonist TCB-2: a behavioral and neurophysiological analysis. Psychopharmacology (Berl). 2010;212:13–23.

    Article  CAS  PubMed  Google Scholar 

  47. Lv J, Wang W, Zhu X, Xu X, Yan Q, Lu J, et al. DW14006 as a direct AMPKα1 activator improves pathology of AD model mice by regulating microglial phagocytosis and neuroinflammation. Brain Behav Immun. 2020;90:55–69.

    Article  CAS  PubMed  Google Scholar 

  48. Li M, Xu T, Zhou F, Wang M, Song H, Xiao X, et al. Neuroprotective effects of four phenylethanoid glycosides on H2O2-induced apoptosis on PC12 cells via the Nrf2/ARE pathway. Int J Mol Sci. 2018;19:1135.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Petri S, Korner S, Kiaei M. Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int. 2012;2012:878030.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J, et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell. 2017;68:185–97. e6.

    Article  CAS  PubMed  Google Scholar 

  51. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10:615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mann CN, Devi SS, Kersting CT, Bleem AV, Karch CM, Holtzman DM, et al. Astrocytic alpha2-Na+/K+ ATPase inhibition suppresses astrocyte reactivity and reduces neurodegeneration in a tauopathy mouse model. Sci Transl Med. 2022;14:eabm4107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamanaka K, Komine O. The multi-dimensional roles of astrocytes in ALS. Neurosci Res. 2018;126:31–8.

    Article  CAS  PubMed  Google Scholar 

  54. Arredondo C, Cefaliello C, Dyrda A, Jury N, Martinez P, Diaz I, et al. Excessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons. Neuron. 2022;110:1656–70. e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Evans CS, Holzbaur ELF. Autophagy and mitophagy in ALS. Neurobiol Dis. 2019;122:35–40.

    Article  CAS  PubMed  Google Scholar 

  56. Meyer M, Lima A, Deniselle MCG, De Nicola AF. Early signs of neuroinflammation in the postnatal wobbler mouse model of amyotrophic lateral sclerosis. Cell Mol Neurobiol. 2023;43:2149–63.

  57. Garofalo S, Cocozza G, Bernardini G, Savage J, Raspa M, Aronica E, et al. Blocking immune cell infiltration of the central nervous system to tame neuroinflammation in amyotrophic lateral sclerosis. Brain Behav Immun. 2022;105:1–14.

    Article  CAS  PubMed  Google Scholar 

  58. Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med. 2013;5:344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu H, Tan CC, Tan L, Yu JT. A mitocentric view of Alzheimer’s disease. Mol Neurobiol. 2017;54:6046–60.

    Article  CAS  PubMed  Google Scholar 

  60. Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci. 2019;13:1310.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Meyer T. [Amyotrophic lateral sclerosis (ALS) - diagnosis, course of disease and treatment options]. Dtsch Med Wochenschr. 2021;146:1613–8.

    CAS  PubMed  Google Scholar 

  62. Modol-Caballero G, Garcia-Lareu B, Herrando-Grabulosa M, Verdes S, Lopez-Vales R, Pages G, et al. Specific expression of glial-derived neurotrophic factor in muscles as gene therapy strategy for amyotrophic lateral sclerosis. Neurotherapeutics. 2021;18:1113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Spaulding HR, Yan Z. AMPK and the adaptation to exercise. Annu Rev Physiol. 2022;84:209–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82273930), the National Natural Science Foundation for Young Scientists of China (82304468, 82304494, 82204486), Major Program of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (23KJA350002), the Natural Science Foundation for Young Scientists of Nanjing University of Chinese Medicine (XPT82204486), Natural Science Foundation of Jiangsu Province (BK20200570).

Author information

Authors and Affiliations

Authors

Contributions

XS, JYW and JL designed the study. XS reviewed the manuscript. JL, ZYJ, AXH, MZ, ZXL, FZ and LM performed the animal and cell experiments. JL, ZYJ and AXH analyzed and interpreted data. JL wrote the manuscript. JL, XS, JYW and HMJ are the guarantors of this work and, as such, have full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. All authors approved the manuscript.

Corresponding authors

Correspondence to Jia-ying Wang or Xu Shen.

Ethics declarations

Competing interests

The authors declare no competing interests. All institutional and national guidelines for the care and use of laboratory animals were followed.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., He, Ax., Jin, Zy. et al. Desloratadine alleviates ALS-like pathology in hSOD1G93A mice via targeting 5HTR2A on activated spinal astrocytes. Acta Pharmacol Sin 45, 926–944 (2024). https://doi.org/10.1038/s41401-023-01223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01223-2

Keywords

Search

Quick links