Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Schisandrin B, a dual positive allosteric modulator of GABAA and glycine receptors, alleviates seizures in multiple mouse models

Abstract

Epilepsy is a prevalent and severe neurological disorder and approximately 30% of patients are resistant to existing medications. It is of utmost importance to develop alternative therapies to treat epilepsy. Schisandrin B (SchB) is a major bioactive constituent of Schisandra chinensis (Turcz.) Baill and has multiple neuroprotective effects, sedative and hypnotic activities. In this study, we investigated the antiseizure effect of SchB in various mouse models of seizure and explored the underlying mechanisms. Pentylenetetrazole (PTZ), strychnine (STR), and pilocarpine-induced mouse seizure models were established. We showed that injection of SchB (10, 30, 60 mg/kg, i.p.) dose-dependently delayed the onset of generalized tonic-clonic seizures (GTCS), reduced the incidence of GTCS and mortality in PTZ and STR models. Meanwhile, injection of SchB (30 mg/kg, i.p.) exhibited therapeutic potential in pilocarpine-induced status epilepticus model, which was considered as a drug-resistant model. In whole-cell recording from CHO/HEK-239 cells stably expressing recombinant human GABAA receptors (GABAARs) and glycine receptors (GlyRs) and cultured hippocampal neurons, co-application of SchB dose-dependently enhanced GABA or glycine-induced current with EC50 values at around 5 μM, and application of SchB (10 μM) alone did not activate the channels in the absence of GABA or glycine. Furthermore, SchB (10 μM) eliminated both PTZ-induced inhibition on GABA-induced current (IGABA) and strychnine (STR)-induced inhibition on glycine-induced current (Iglycine). Moreover, SchB (10 μM) efficiently rescued the impaired GABAARs associated with genetic epilepsies. In addition, the homologous mutants in both GlyRs-α1(S267Q) and GABAARs-α1(S297Q)β2(N289S)γ2L receptors by site-directed mutagenesis tests abolished SchB-induced potentiation of IGABA and Iglycine. In conclusion, we have identified SchB as a natural positive allosteric modulator of GABAARs and GlyRs, supporting its potential as alternative therapies for epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SchB induced potentiation of glycine-elicited currents (Iglycine) in the recombinant α1, α2, and α3 glycine receptors.
Fig. 2: SchB induced potentiation of GABA-elicited currents (IGABA) in recombinant GABAA receptors (α1β2γ2L, α2β2γ2L, α4β3δ, and α6β3δ).
Fig. 3: Effects of SchB on GABA- and glycine-evoked currents in cultured hippocampal neurons.
Fig. 4: Effects of SchB on seizure models in mice.
Fig. 5: Effects of SchB on mutations in GABAA receptors associated with genetic epilepsies.
Fig. 6: Effects of mutations at sites important for other positive allosteric modulators of α1 GlyR on the activity of SchB.
Fig. 7: SchB-induced potentiation of GABA-evoked currents (IGABA) in recombinant α1β2γ2L is mediated through sites independent of those of diazepam (DZP) and etomidate (ETO).
Fig. 8: The TM2 residues α1S297 and β2N289, located in the β+/α- subunit interfaces, are crucial for SchB-induced potentiation of GABA-elicited currents in recombinant α1β2γ2L.

Similar content being viewed by others

References

  1. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Prim. 2018;4:18024.

    Article  PubMed  Google Scholar 

  2. Loscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72:606–38.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ko Y, Lee C, Lee Y, Lee JS. Systematic approach for drug repositioning of anti-epileptic drugs. Diagnostics. 2019;9:208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greenfield LJ Jr. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure. 2013;22:589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rudolph U, Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov. 2011;10:685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sieghart W, Savic MM. International Union of Basic and Clinical Pharmacology CVI: GABAA receptor subtype- and function-selective ligands: key issues in translation to humans. Pharmacol Rev. 2018;70:836–78.

    Article  CAS  PubMed  Google Scholar 

  7. Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron. 2012;73:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acid A receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 2008;60:243–60.

    Article  CAS  PubMed  Google Scholar 

  9. Chattipakorn SC, McMahon LL. Strychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus. J Neurophysiol. 2003;89:1339–42.

    Article  CAS  PubMed  Google Scholar 

  10. Kirchner A, Breustedt J, Rosche B, Heinemann UF, Schmieden V. Effects of taurine and glycine on epileptiform activity induced by removal of Mg2+ in combined rat entorhinal cortex–hippocampal slices. Epilepsia. 2003;44:1145–52.

    Article  CAS  PubMed  Google Scholar 

  11. Legendre P. The glycinergic inhibitory synapse. Cell Mol Life Sci. 2001;58:760–93.

    Article  CAS  PubMed  Google Scholar 

  12. Kaputlu İ, Uzbay T. L-NAME inhibits pentylenetetrazole and strychnine-induced seizures in mice. Brain Res. 1997;753:98–101.

    Article  CAS  PubMed  Google Scholar 

  13. Macdonald RL, Kang JQ, Gallagher MJ. Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol. 2010;588:1861–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung SK, Vanbellinghen JF, Mullins JG, Robinson A, Hantke J, Hammond CL, et al. Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci. 2010;30:9612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paucar M, Waldthaler J, Svenningsson P. GLRA1 mutation and long-term follow-up of the first hyperekplexia family. Neurol Genet. 2018;4:e259.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liao J, Zang J, Yuan F, Liu S, Zhang Y, Li H, et al. Identification and analysis of anthocyanin components in fruit color variation in Schisandra chinensis. J Sci Food Agric. 2016;9:3213–9.

    Article  Google Scholar 

  17. Cai N-N, Wang Z-Z, Zhu X-C, Jiang Y, Zhu W-Q, Yang R, et al. Schisandrin A and B enhance the dentate gyrus neurogenesis in mouse hippocampus. J Chem Neuroanat. 2020;105:101751.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Zhao X, Mao X, Liu A, Liu Z, Li X, et al. Pharmacological evaluation of sedative and hypnotic effects of schizandrin through the modification of pentobarbital-induced sleep behaviors in mice. Eur J Pharmacol. 2014;744:157–63.

    Article  CAS  PubMed  Google Scholar 

  19. Chen WW, He RR, Li YF, Li SB, Tsoi B, Kurihara H. Pharmacological studies on the anxiolytic effect of standardized Schisandra lignans extract on restraint-stressed mice. Phytomedicine. 2011;18:1144–7.

    Article  PubMed  Google Scholar 

  20. Yan T, Wang N, Liu B, Wu B, Xiao F, He B, et al. Schisandra chinensis ameliorates depressive‐like behaviors by regulating microbiota‐gut‐brain axis via its anti‐inflammation activity. Phytother Res. 2021;35:289–96.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, You L, Cheng Y, Hu K, Wang Z, Cheng Y, et al. Investigation of pharmacokinetics, tissue distribution and excretion of schisandrin B in rats by HPLC-MS/MS. Biomed Chromatogr. 2018;32:e4069.

  22. Ma C, Sheng N, Li Y, Zheng H, Wang Z, Zhang J. A comprehensive perspective on the disposition, metabolism, and pharmacokinetics of representative multi-components of Dengzhan Shengmai in rats with chronic cerebral hypoperfusion after oral administration. J Ethnopharmacol. 2023;307:116212.

    Article  CAS  PubMed  Google Scholar 

  23. Lee TH, Jung CH, Lee DH. Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague-Dawley rats. Food Chem Toxicol. 2012;50:4239–45.

    Article  CAS  PubMed  Google Scholar 

  24. Li N, Liu J, Wang M, Yu Z, Zhu K, Gao J, et al. Sedative and hypnotic effects of Schisandrin B through increasing GABA/Glu ratio and upregulating the expression of GABAA in mice and rats. Biomed Pharmacother. 2018;103:509–16.

    Article  CAS  PubMed  Google Scholar 

  25. Mandhane SN, Aavula K, Rajamannar T. Timed pentylenetetrazol infusion test: a comparative analysis with s.c.PTZ and MES models of anticonvulsant screening in mice. Seizure. 2007;16:636–44.

    Article  PubMed  Google Scholar 

  26. El-Mowafy AM, Abdel-Dayem MA. Novel protection by omega-3-FAs against strychnine-induced tonic-convulsion in mice: synergy with carbamazepine. J Food Sci Nutr Res. 2021;4:227–39.

    Article  Google Scholar 

  27. Gozzelino L, Kochlamazashvili G, Baldassari S, Mackintosh AI, Licchetta L, Iovino E, et al. Defective lipid signalling caused by mutations in PIK3C2B underlies focal epilepsy. Brain. 2022;145:2313–31.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.

    Article  CAS  PubMed  Google Scholar 

  29. Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev. 2012;112:6285–318.

    Article  CAS  PubMed  Google Scholar 

  30. Derchansky M, Rokni D, Rick J, Wennberg R, Bardakjian B, Zhang L, et al. Bidirectional multisite seizure propagation in the intact isolated hippocampus: the multifocality of the seizure “focus. Neurobiol Dis. 2006;23:312–28.

    Article  CAS  PubMed  Google Scholar 

  31. Ramanjaneyulu R, Ticku MK. Interactions of pentamethylenetetrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine-GABA receptor-ionophore complex. Eur J Pharmacol. 1984;98:337–45.

    Article  CAS  PubMed  Google Scholar 

  32. Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172:143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akerman CJ, Cline HT. Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci. 2007;30:382–9.

    Article  CAS  PubMed  Google Scholar 

  34. Han DY, Guan BJ, Wang YJ, Hatzoglou M, Mu TW. L-type calcium channel blockers enhance trafficking and function of epilepsy-associated alpha1(D219N) subunits of GABAA receptors. ACS Chem Biol. 2015;10:2135–48.

    Article  CAS  PubMed  Google Scholar 

  35. Carvill GL, Weckhuysen S, McMahon JM, Hartmann C, Moller RS, Hjalgrim H, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82:1245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Audenaert D, Schwartz E, Claeys K, Claes L, Deprez L, Suls A, et al. A novel GABRG2 mutation associated with febrile seizures. Neurology. 2006;67:687–90.

    Article  CAS  PubMed  Google Scholar 

  37. Maillard PY, Baer S, Schaefer E, Desnous B, Villeneuve N, Lepine A, et al. Molecular and clinical descriptions of patients with GABAA receptor gene variants (GABRA1, GABRB2, GABRB3, GABRG2): A cohort study, review of literature, and genotype-phenotype correlation. Epilepsia. 2022;63:2519–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, et al. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature. 1997;389:385–9.

    Article  CAS  PubMed  Google Scholar 

  39. Perkins DI, Trudell JR, Crawford DK, Alkana RL, Davies DL. Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol Ther. 2010;127:53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiong W, Cheng K, Cui T, Godlewski G, Rice KC, Xu Y, et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol. 2011;7:296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moraga-Cid G, Yevenes GE, Schmalzing G, Peoples RW, Aguayo LG. A Single phenylalanine residue in the main intracellular loop of alpha1 gamma-aminobutyric acid type A and glycine receptors influences their sensitivity to propofol. Anesthesiology. 2011;115:464–73.

    Article  CAS  PubMed  Google Scholar 

  42. Yevenes GE, Zeilhofer HU. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PLoS One. 2011;6:e23886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hall BJ, Chebib M, Hanrahan JR, Johnston GA. Flumazenil-independent positive modulation of gamma-aminobutyric acid action by 6-methylflavone at human recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptors. Eur J Pharmacol. 2004;491:1–8.

    Article  CAS  PubMed  Google Scholar 

  44. Wieland HA, Lüddens H, Seeburg PH. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem. 1992;267:1426–9.

    Article  CAS  PubMed  Google Scholar 

  45. Belelli D, Lambert JJ, Peters JA, Wafford K, Whiting PJ. The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA. 1997;94:11031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maldifassi MC, Baur R, Sigel E. Functional sites involved in modulation of the GABAA receptor channel by the intravenous anesthetics propofol, etomidate and pentobarbital. Neuropharmacology. 2016;105:207–14.

    Article  CAS  PubMed  Google Scholar 

  47. Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J. Subunit-specific trafficking of GABAA receptors during status epilepticus. J Neurosci. 2008;28:2527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pavlov I, Walker MC. Tonic GABAA receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology. 2013;69:55–61.

    Article  CAS  PubMed  Google Scholar 

  49. Sigel E, Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci. 2018;39:659–71.

    Article  CAS  PubMed  Google Scholar 

  50. Goodkin HP, Kapur J. The impact of diazepam’s discovery on the treatment and understanding of status epilepticus. Epilepsia. 2009;50:2011–8.

    Article  CAS  PubMed  Google Scholar 

  51. McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor alpha1 subtype. Nat Neurosci. 2000;3:587–92.

    Article  CAS  PubMed  Google Scholar 

  52. Engin E, Liu J, Rudolph U. alpha2-containing GABAA receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol Ther. 2012;136:142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Melon L, Hammond R, Lewis M, Maguire J. A novel, synthetic, neuroactive steroid is effective at decreasing depression-like behaviors and improving maternal care in preclinical models of postpartum depression. Front Endocrinol. 2018;9:703.

    Article  Google Scholar 

  54. Scott LJ. Brexanolone: first global approval. Drugs. 2019;79:779–83.

    Article  CAS  PubMed  Google Scholar 

  55. Schulz DW, MacDonald RL. Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions. Brain Res. 1981;209:177–88.

    Article  CAS  PubMed  Google Scholar 

  56. Ziemba AM, Forman SA. Correction for inhibition leads to an allosteric co-agonist model for pentobarbital modulation and activation of alpha1beta3gamma2L GABAA receptors. PLoS One. 2016;11:e0154031.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Taverna FA, Cameron B-R, Hampson DL, Wang LY, MacDonald JF. Sensitivity of AMPA receptors to pentobarbital. Eur J Pharmacol. 1994;267:R3–R5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CAMS Innovation Fund for Medical Sciences (CIFMS, no. 2021-I2M-1-029); Major Science and Technology Special Program of Yunnan Science and Technology Department (grant number 202102AA100018); Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (grant number: BZ0150).

Author information

Authors and Affiliations

Authors

Contributions

JW: Investigation, Methodology, Formal analysis, and Writing-original draft; MZ, YCJ, ML, and KXY: Investigation, Methodology, and contributing reagents. HBY: Investigation, Methodology, Writing-review & editing, Funding acquisition, Supervision, and Project administration. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Hai-bo Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All the experimental procedures on animals have been proved by the Institutional Animal Care and Welfare Committee of the Chinese Academy of Medical Sciences & Peking Union Medical College.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhao, M., Jin, Yc. et al. Schisandrin B, a dual positive allosteric modulator of GABAA and glycine receptors, alleviates seizures in multiple mouse models. Acta Pharmacol Sin 45, 465–479 (2024). https://doi.org/10.1038/s41401-023-01195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01195-3

Keywords

Search

Quick links