Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy

Abstract

Among the numerous complications of diabetes mellitus, diabetic wounds seriously affect patients’ quality of life and result in considerable psychological distress. Promoting blood vessel regeneration in wounds is a crucial step in wound healing. Lonicerin (LCR), a bioactive compound found in plants of the Lonicera japonica species and other honeysuckle plants, exhibits anti-inflammatory and antioxidant activities, and it recently has been found to alleviate ulcerative colitis by enhancing autophagy. In this study we investigated the efficacy of LCR in treatment of diabetic wounds and the underlying mechanisms. By comparing the single-cell transcriptomic data from healing and non-healing states in diabetic foot ulcers (DFU) of 5 patients, we found that autophagy and SIRT signaling activation played a crucial role in mitigating inflammation and oxidative stress, and promoting cell survival in wound healing processes. In TBHP-treated human umbilical vein endothelial cells (HUVECs), we showed that LCR alleviated cell apoptosis, and enhanced the cell viability, migration and angiogenesis. Furthermore, we demonstrated that LCR treatment dose-dependently promoted autophagy in TBHP-treated HUVECs by upregulating Sirt1 expression, and exerted its anti-apoptotic effect through the Sirt1-autophagy axis. Knockdown of Sirt1 significantly decreased the level of autophagy, and mitigated the anti-apoptotic effect of LCR. In a STZ-induced diabetic rat model, administration of LCR significantly promoted wound healing, which was significantly attenuated by Sirt1 knockdown. This study highlights the potential of LCR as a therapeutic agent for the treatment of diabetic wounds and provides insights into the molecular mechanisms underlying its effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lonicerin treatment decreases TBHP-induced apoptosis in HUVECs.
Fig. 2: Lonicerin combats TBHP-induced apoptosis and promotes the function of HUVECs.
Fig. 3: Lonicerin promotes autophagy in TBHP-treated HUVECs.
Fig. 4: Lonicerin promotes autophagy by increasing Sirt1 expression.
Fig. 5: Anti-apoptotic effects of Lonicerin (LCR) are related to Sirt1 in HUVECs.
Fig. 6: Lonicerin accelerates cutaneous wound healing in rats.
Fig. 7: Lonicerin accelerates cutaneous wound healing in rats (continue).
Fig. 8

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The Single cell RNA-seq data were obtained in the NCBI GEO: https://ncbi.nlm.nih.gov/geo/ under accession numbers GSE165816.

References

  1. The Lancet Diabetes E. Diabetes: mapping the titanic struggle ahead. The Lancet Diabetes Endocrinol. 2018;6:1.

    Article  Google Scholar 

  2. Long Y, Wei H, Li J, Yao G, Yu B, Ni D, et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano. 2018;12:12533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing oxoband alleviate diabetic and infectious wound healing. Biomaterials. 2020;249:120020.

    Article  CAS  PubMed  Google Scholar 

  4. MartĂ­-Carvajal AJ, Gluud C, Nicola S, Simancas-Racines D, Reveiz L, Oliva P, et al. Growth factors for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2015;2015:Cd008548.

    PubMed  PubMed Central  Google Scholar 

  5. Chang M, Nguyen TT. Strategy for treatment of infected diabetic foot ulcers. Acc Chem Res. 2021;54:1080–93.

    Article  CAS  PubMed  Google Scholar 

  6. Wu H, Li F, Shao W, Gao J, Ling D. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent Sci. 2019;5:477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. An T, Chen Y, Tu Y, Lin P. Mesenchymal stromal cell-derived extracellular vesicles in the treatment of diabetic foot ulcers: Application and challenges. Stem Cell Rev Rep. 2021;17:369–78.

    Article  CAS  PubMed  Google Scholar 

  8. Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, et al. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev. 2021;2021:8852759.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martin P. Wound healing–aiming for perfect skin regeneration. Science. 1997;276:75–81.

    Article  CAS  PubMed  Google Scholar 

  10. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010;163:257–68.

    Article  CAS  PubMed  Google Scholar 

  11. Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, et al. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci Adv. 2021;7:eabj0153.

  12. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5–23.

    Article  CAS  PubMed  Google Scholar 

  13. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hosemann W, Wigand ME, Göde U, Länger F, Dunker I. Normal wound healing of the paranasal sinuses: Clinical and experimental investigations. Eur Arch Otorhinolaryngol. 1991;248:390–4.

    Article  CAS  PubMed  Google Scholar 

  15. Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020;58:298–312.

    Article  CAS  PubMed  Google Scholar 

  16. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 2011;19:134–48.

    Article  PubMed  PubMed Central  Google Scholar 

  18. DiPietro LA. Angiogenesis and wound repair: When enough is enough. J Leukoc Biol. 2016;100:979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez PG, Felix FN, Woodley DT, Shim EK. The role of oxygen in wound healing: A review of the literature. Dermatol Surg. 2008;34:1159–69.

    CAS  PubMed  Google Scholar 

  20. Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res. 2008;58:165–71.

    Article  PubMed  Google Scholar 

  21. Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med. 2012;52:556–92.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020;14:583–600.

    Article  PubMed  Google Scholar 

  23. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19:257–67.

    Article  CAS  PubMed  Google Scholar 

  24. Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. Int J Mol Sci. 2017;18:1419.

  25. Yang L, Zhang L, Hu J, Wang W, Liu X. Promote anti-inflammatory and angiogenesis using a hyaluronic acid-based hydrogel with mirna-laden nanoparticles for chronic diabetic wound treatment. Int J Biol Macromol. 2021;166:166–78.

    Article  CAS  PubMed  Google Scholar 

  26. Barcelos LS, Duplaa C, Kränkel N, Graiani G, Invernici G, Katare R, et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res. 2009;104:1095–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doherty J, Baehrecke EH. Life, death and autophagy. Nat Cell Biol. 2018;20:1110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, Lee SJ, et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA. 2010;107:18880–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen S, Jiang YZ, Huang L, Zhou RJ, Yu KD, Liu Y, et al. The residual tumor autophagy marker LC3B serves as a prognostic marker in local advanced breast cancer after neoadjuvant chemotherapy. Clin Cancer Res. 2013;19:6853–62.

    Article  CAS  PubMed  Google Scholar 

  30. Salazar G, Cullen A, Huang J, Zhao Y, Serino A, Hilenski L, et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy. 2020;16:1092–110.

    Article  CAS  PubMed  Google Scholar 

  31. Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120:1812–24.

    Article  CAS  PubMed  Google Scholar 

  32. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol. 2018;163-164:98–117.

    Article  CAS  PubMed  Google Scholar 

  33. Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol. 2017;14:170–84.

    Article  CAS  PubMed  Google Scholar 

  34. Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383:1564–76.

    Article  CAS  PubMed  Google Scholar 

  35. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62.

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Zhang J, Zhang Q, Zhang D, Xiang F, Jia J, et al. High glucose suppresses keratinocyte migration through the inhibition of p38 MAPK/autophagy pathway. Front Physiol. 2019;10:24.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shaikh-Kader A, Houreld NN, Rajendran NK, Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem Funct. 2019;37:432–42.

    Article  CAS  PubMed  Google Scholar 

  38. Guo Y, Lin C, Xu P, Wu S, Fu X, Xia W, et al. Ages induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes. Sci Rep. 2016;6:36416.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiang L, Yang S, Cui YH, He YY. Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing. Autophagy. 2021;17:2128–43.

    Article  CAS  PubMed  Google Scholar 

  40. Liu Z, Tang W, Liu J, Han Y, Yan Q, Dong Y, et al. A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact Mater. 2023;20:610–26.

    CAS  PubMed  Google Scholar 

  41. Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through sirt1. Br J Pharmacol. 2014;171:523–35.

    Article  CAS  PubMed  Google Scholar 

  42. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med. 2013;61:95–110.

    Article  CAS  PubMed  Google Scholar 

  43. Vachharajani VT, Liu T, Brown CM, Wang X, Buechler NL, Wells JD, et al. Sirt1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol. 2014;96:785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yerra VG, Kalvala AK, Kumar A. Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. J Nutr Biochem. 2017;47:41–52.

    Article  CAS  PubMed  Google Scholar 

  45. Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, et al. Sirt1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 2020;22:1170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li X, Wu G, Han F, Wang K, Bai X, Jia Y, et al. Sirt1 activation promotes angiogenesis in diabetic wounds by protecting endothelial cells against oxidative stress. Arch Biochem Biophys. 2019;661:117–24.

    Article  CAS  PubMed  Google Scholar 

  47. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

    Article  CAS  PubMed  Google Scholar 

  48. Shang X, Pan H, Li M, Miao X, Ding H. Lonicera japonica thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional chinese medicine. J Ethnopharmacol. 2011;138:1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu Z, Li K, Pan T, Liu J, Li B, Li C, et al. Lonicerin, an anti-alge flavonoid against Pseudomonas aeruginosa virulence screened from Shuanghuanglian formula by molecule docking based strategy. J Ethnopharmacol. 2019;239:111909.

    Article  CAS  PubMed  Google Scholar 

  50. Gu LZ, Sun H. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury. Front Biosci (Landmark Ed). 2020;25:480–97.

  51. Lv Q, Xing Y, Liu J, Dong D, Liu Y, Qiao H, et al. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation. Acta Pharm Sin B. 2021;11:2880–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lou J, Wang X, Zhang H, Yu G, Ding J, Zhu X, et al. Inhibition of PLA2G4E/cPLA2 promotes survival of random skin flaps by alleviating lysosomal membrane permeabilization-induced necroptosis. Autophagy. 2022;18:1841–63.

    Article  CAS  PubMed  Google Scholar 

  53. Theocharidis G, Thomas BE, Sarkar D, Mumme HL, Pilcher WJR, Dwivedi B, et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 2022;13:181.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang G, Miao Y, Kim N, Sweren E, Kang S, Hu Z, et al. Association of the psoriatic microenvironment with treatment response. JAMA Dermatol. 2020;156:1057–65.

    Article  PubMed  Google Scholar 

  55. Wang G, Sweren E, Andrews W, Li Y, Chen J, Xue Y, et al. Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte HIF-1α signaling and glutamine metabolism. Sci Adv. 2023;9:eabo7555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trott O, Olson AJ. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc. 2014;9:2100–22.

    Article  CAS  PubMed  Google Scholar 

  58. Ren H, Zhao F, Zhang Q, Huang X, Wang Z. Autophagy and skin wound healing. Burns Trauma. 2022;10:tkac003.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lozano GM, Bejarano I, Espino J, Gonzalez D, Ortiz A, Garcia JF, et al. Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev. 2009;55:615–21.

    Article  CAS  PubMed  Google Scholar 

  60. Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022;7:402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen F, Shi Y. Recent advances in single-cell view of mesenchymal stem cell in osteogenesis. Front Cell Dev Biol. 2021;9:809918.

    Article  PubMed  Google Scholar 

  62. Sadria M, Layton AT. Interactions among mtorc, ampk and sirt: a computational model for cell energy balance and metabolism. Cell Commun Signal. 2021;19:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol. 2016;74:607–25.

    Article  PubMed  Google Scholar 

  64. Jones RE, Foster DS, Longaker MT. Management of chronic wounds-2018. JAMA. 2018;320:1481–2.

    Article  PubMed  Google Scholar 

  65. Morton LM, Phillips TJ. Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol. 2016;74:589–605.

    Article  PubMed  Google Scholar 

  66. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173:370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 2019;146:97–125.

    Article  CAS  PubMed  Google Scholar 

  68. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20:257–72.

    Article  CAS  PubMed  Google Scholar 

  69. Shen CY, Jiang JG, Huang CL, Zhu W, Zheng CY. Polyphenols from blossoms of Citrus aurantium l. Var. Amara Engl. show significant anti-complement and anti-inflammatory effects. J Agric Food Chem. 2017;65:9061–8.

    Article  CAS  PubMed  Google Scholar 

  70. Kim NM, Kim J, Chung HY, Choi JS. Isolation of luteolin 7-O-rutinoside and esculetin with potential antioxidant activity from the aerial parts of artemisia montana. Arch Pharmacal Res. 2000;23:237–9.

    Article  CAS  Google Scholar 

  71. Lee JH, Han Y. Antiarthritic effect of lonicerin on candida albicans arthritis in mice. Arch Pharmacal Res. 2011;34:853–9.

    Article  CAS  Google Scholar 

  72. Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis. 2021;24:213–36.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pasut A, Becker LM, Cuypers A, Carmeliet P. Endothelial cell plasticity at the single-cell level. Angiogenesis. 2021;24:311–26.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jiang X, Yao Z, Wang K, Lou L, Xue K, Chen J, et al. MDL-800, the Sirt6 activator, suppresses inflammation via the NF-ÎşB pathway and promotes angiogenesis to accelerate cutaneous wound healing in mice. Oxid Med Cell Longev. 2022;2022:1619651.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kurundkar D, Kurundkar AR, Bone NB, Becker EJ Jr, Liu W, Chacko B, et al. Sirt3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight 2019;4:e120722.

  76. Lin Z, Teng C, Ni L, Zhang Z, Lu X, Lou J, et al. Echinacoside upregulates sirt1 to suppress endoplasmic reticulum stress and inhibit extracellular matrix degradation in vitro and ameliorates osteoarthritis in vivo. Oxid Med Cell Longev. 2021;2021:3137066.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang Z, Wu J, Teng C, Wang J, Yu J, Jin C, et al. Orientin downregulating oxidative stress-mediated endoplasmic reticulum stress and mitochondrial dysfunction through AMPK/Sirt1 pathway in rat nucleus pulposus cells in vitro and attenuated intervertebral disc degeneration in vivo. Apoptosis. 2022;27:1031–48.

    Article  CAS  PubMed  Google Scholar 

  78. Lu J, Miao Z, Jiang Y, Xia W, Wang X, Shi Y, et al. Chrysophanol prevents IL-1β-induced inflammation and ecm degradation in osteoarthritis via the sirt6/nf-κb and nrf2/nf-κb axis. Biochem Pharmacol. 2023;208:115402.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is funded by the National Natural Science Foundation of China (82202468, 82372532), Natural Science Foundation of Guangdong Province (2023A1515012227), the Foundation of Guangzhou Municipal Science and Technology Bureau, the Basic Research Program - Basic and Applied Basic Research Project (2023A04J2355), High Level Introduction of Talent Research Startup Fund Southern Medical University (Gaofeng Wang) and Nanfang Hospital Distinguished Young Cultivation Program (2022J003).

Author information

Authors and Affiliations

Authors

Contributions

ZL and LYL performed experiments, drafted and critically revised the manuscript. ZL, CJ, JRZ, CYQ and PW analyzed, interpreted the data and critically revised the manuscript. LY, CZL, YYG, LC, YL and LBN performed statistical analysis. LBN and GFW conceived, designed the study, discussed the experiments and critically revised the manuscript. All authors have approved the final manuscript and have agreed to be accountable for all the aspects of the work.

Corresponding authors

Correspondence to Li-bin Ni or Gao-feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Li, Ly., Chen, L. et al. Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy. Acta Pharmacol Sin 45, 815–830 (2024). https://doi.org/10.1038/s41401-023-01193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01193-5

Keywords

Search

Quick links