Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway

Abstract

There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg−1·d−1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg−1·d−1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia.

Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of caffeic acid on cerebral infarction volume, neurobehavioural scores, antioxidant enzymes and oxidative damage indices in pMCAO rats.
Fig. 2: RNA-seq analysis of genes in pMCAO rat brain tissues.
Fig. 3: Caffeic acid upregulates the Nrf2 signaling pathway after cerebral ischemia.
Fig. 4: Caffeic acid exerted neuroprotective effects via the Nrf2 signaling pathway in OGD/R-treated SK-N-SH cells.
Fig. 5: Caffeic acid inhibited ferroptosis in pMCAO rats.
Fig. 6: Caffeic acid inhibited ferroptosis in OGD/R-damaged cells.
Fig. 7: Caffeic acid reversed ferroptosis via the Nrf2 signaling pathway in vitro.
Fig. 8: Caffeic acid reversed ferroptosis via the Nrf2 signaling pathway in vivo.
Fig. 9: Caffeic acid exerted anti-inflammatory properties in pMCAO rats.
Fig. 10: Caffeic acid suppressed the LPS-induced proinflammatory response in BV2 cells via Nrf2 signaling.
Fig. 11: Caffeic acid inhibited ferroptosis via the Nrf2 signaling pathway in OGD/R primary neurons and a coculture system of microglia and neurons.

Similar content being viewed by others

References

  1. Owolabi MO, Thrift AG, Mahal A, Ishida M, Martins S, Johnson WD, et al. Primary stroke prevention worldwide: translating evidence into action. Lancet Public Health. 2022;7:e74–e85.

    Article  PubMed  Google Scholar 

  2. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, et al. Acsl4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 2021;93:312–21.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen JE, Itshayek E, Moskovici S, Gomori JM, Fraifeld S, Eichel R, et al. State-of-the-art reperfusion strategies for acute ischemic stroke. J Clin Neurosci. 2011;18:319–23.

    Article  PubMed  Google Scholar 

  4. Kelmanson IV, Shokhina AG, Kotova DA, Pochechuev MS, Ivanova AD, Kostyuk AI, et al. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol. 2021;48:102178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sharpe PC, Mulholland C, Trinick T. Ascorbate and malondialdehyde in stroke patients. Ir J Med Sci. 1994;163:488–91.

    Article  PubMed  CAS  Google Scholar 

  6. Domínguez C, Delgado P, Vilches A, Martín-Gallán P, Ribó M, Santamarina E, et al. Oxidative stress after thrombolysis-induced reperfusion in human stroke. Stroke. 2010;41:653–60.

    Article  PubMed  Google Scholar 

  7. Kimura-Ohba S, Yang Y. Oxidative DNA damage mediated by intranuclear mmp activity is associated with neuronal apoptosis in ischemic stroke. Oxid Med Cell Longev. 2016;2016:6927328.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ichikawa H, Wang L, Konishi T. Prevention of cerebral oxidative injury by post-ischemic intravenous administration of shengmai san. Am J Chin Med. 2006;34:591–600.

    Article  PubMed  Google Scholar 

  9. Narne P, Pandey V, Phanithi PB. Role of nitric oxide and hydrogen sulfide in ischemic stroke and the emergent epigenetic underpinnings. Mol Neurobiol. 2019;56:1749–69.

    Article  PubMed  CAS  Google Scholar 

  10. Xu J, Wang A, Meng X, Yalkun G, Xu A, Gao Z, et al. Edaravone dexborneol versus edaravone alone for the treatment of acute ischemic stroke: A phase iii, randomized, double-blind, comparative trial. Stroke. 2021;52:772–80.

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi S, Fukuma S, Ikenoue T, Fukuhara S, Kobayashi S. Effect of edaravone on neurological symptoms in real-world patients with acute ischemic stroke. Stroke. 2019;50:1805–11.

    Article  PubMed  CAS  Google Scholar 

  12. Chen T, Shi R, Suo Q, Wu S, Liu C, Huang S, et al. Progranulin released from microglial lysosomes reduces neuronal ferroptosis after cerebral ischemia in mice. J Cereb Blood Flow Metab. 2022;43:505–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19:405–14.

    Article  PubMed  CAS  Google Scholar 

  14. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhu L, Feng Z, Zhang J, Du L, Meng A. Microrna-27a regulates ferroptosis through slc7a11 to aggravate cerebral ischemia-reperfusion injury. Neurochem Res. 2023;48:1370–81.

    Article  PubMed  CAS  Google Scholar 

  16. Selim M. Treatment with the iron chelator, deferoxamine mesylate, alters serum markers of oxidative stress in stroke patients. Transl Stroke Res. 2010;1:35–9.

    Article  PubMed  CAS  Google Scholar 

  17. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177:1262–79.e1225.

    Article  PubMed  CAS  Google Scholar 

  18. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:Inrf2 (keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47:1304–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, et al. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem. 2008;283:8984–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Krajka-Kuzniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-are signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep. 2017;69:393–402.

    Article  PubMed  CAS  Google Scholar 

  21. Pradeep H, Diya JB, Shashikumar S, Rajanikant GK. Oxidative stress-assassin behind the ischemic stroke. Folia Neuropathol. 2012;50:219–30.

    Article  PubMed  CAS  Google Scholar 

  22. Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005;25:10321–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu L, Vollmer MK, Fernandez VM, Dweik Y, Kim H, Dore S. Korean red ginseng pretreatment protects against long-term sensorimotor deficits after ischemic stroke likely through Nrf2. Front Cell Neurosci. 2018;12:74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Duan J, Cui J, Yang Z, Guo C, Cao J, Xi M, et al. Neuroprotective effect of apelin 13 on ischemic stroke by activating AMPK/GSK-3beta/Nrf2 signaling. J Neuroinflammation. 2019;16:24.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R. Nrf2-are pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84–104.

    Article  PubMed  CAS  Google Scholar 

  26. Johnson DA, Amirahmadi S, Ward C, Fabry Z, Johnson JA. The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol Sci. 2010;114:237–46.

    Article  PubMed  CAS  Google Scholar 

  27. Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, et al. Transcriptomic and proteomic profiling of keap1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat. 2012;132:175–87.

    Article  PubMed  CAS  Google Scholar 

  28. Harada N, Kanayama M, Maruyama A, Yoshida A, Tazumi K, Hosoya T, et al. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch Biochem Biophys. 2011;508:101–9.

    Article  PubMed  CAS  Google Scholar 

  29. Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA. Novel hematopoietic target genes in the Nrf2-mediated transcriptional pathway. Oxid Med Cell Longev. 2013;2013:120305.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khan FA, Maalik A, Murtaza G. Inhibitory mechanism against oxidative stress of caffeic acid. J Food Drug Anal. 2016;24:695–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Darendelioglu E. Caffeic acid suppresses HT-29 cell death induced by H2O2 via oxidative stress and apoptosis. Bratisl Lek Listy. 2020;121:805–11.

    PubMed  CAS  Google Scholar 

  32. Jiang RW, Lau KM, Hon PM, Mak TC, Woo KS, Fung KP. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr Med Chem. 2005;12:237–46.

    Article  PubMed  CAS  Google Scholar 

  33. Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X. Dengzhan xixin injection derived from a traditional Chinese herb erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. J Ethnopharmacol. 2022;288:114988.

    Article  PubMed  CAS  Google Scholar 

  34. Luo L, Wu S, Chen R, Rao H, Peng W, Su W. The study of neuroprotective effects and underlying mechanism of naoshuantong capsule on ischemia stroke mice. Chin Med. 2020;15:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mu X, Xu X, Guo X, Yang P, Du J, Mi N, et al. Identification and characterization of chemical constituents in dengzhan shengmai capsule and their metabolites in rat plasma by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1108:54–64.

    Article  CAS  Google Scholar 

  36. Zhou Y, Fang SH, Ye YL, Chu LS, Zhang WP, Wang ML, et al. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats. Acta Pharmacol Sin. 2006;27:1103–10.

    Article  PubMed  CAS  Google Scholar 

  37. Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the united states: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev. 2002;54:271–84.

    Article  PubMed  CAS  Google Scholar 

  39. Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O. Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. J Cereb Blood Flow Metab. 2014;34:1573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet. 2012;379:2364–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91.

    Article  PubMed  CAS  Google Scholar 

  42. Lo EH. Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol. 2008;153:S396–405.

    Article  PubMed  CAS  Google Scholar 

  43. Engel O, Kolodziej S, Dirnagl U, Prinz V. Modeling stroke in mice - middle cerebral artery occlusion with the filament model. J Vis Exp. 2011;6:2423.

    Google Scholar 

  44. Feng H, Hu L, Zhu H, Tao L, Wu L, Zhao Q, et al. Repurposing antimycotic ciclopirox olamine as a promising anti-ischemic stroke agent. Acta Pharm Sin B. 2020;10:434–46.

    Article  PubMed  CAS  Google Scholar 

  45. Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, et al. caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the Nrf2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine. 2022;102:154112.

    Article  PubMed  CAS  Google Scholar 

  46. Peng Y, Shao-Feng XU, Wang L, Feng YP, Wang XL. Effects of chiral NBP on cerebral infarct volume due to transient focal cerebral ischemia. Chin New Drugs J. 2005;14:420–3.

    CAS  Google Scholar 

  47. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17:472–6.

    Article  PubMed  CAS  Google Scholar 

  48. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.

    Article  PubMed  CAS  Google Scholar 

  49. Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023;19:1982–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, et al. Crosstalk between the oxidative stress and glia cells after stroke: from mechanism to therapies. Front Immunol. 2022;13:852416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Collaborators GBDS. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20:795–820.

    Article  Google Scholar 

  53. Xu R, Wang L, Sun L, Dong J. Neuroprotective effect of magnesium supplementation on cerebral ischemic diseases. Life Sci. 2021;272:119257.

    Article  PubMed  CAS  Google Scholar 

  54. Cheng Y, Song Y, Chen H, Li Q, Gao Y, Lu G, et al. Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders. Oxid Med Cell Longev. 2021;2021:5005136.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kashiwada Y, Nishizawa M, Yamagishi T, Tanaka T, Nonaka G, Cosentino LM, et al. Anti-aids agents, 18. Sodium and potassium salts of caffeic acid tetramers from arnebia euchroma as anti-hiv agents. J Nat Prod. 1995;58:392–400.

    Article  PubMed  CAS  Google Scholar 

  56. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4:461–70.

    Article  PubMed  CAS  Google Scholar 

  57. Kępa M, Miklasińska-Majdanik M, Wojtyczka RD, Idzik D, Korzeniowski K, Smoleń-Dzirba J, et al. Antimicrobial potential of caffeic acid against staphylococcus aureus clinical strains. Biomed Res Int. 2018;2018:7413504.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Khan F, Bamunuarachchi NI, Tabassum N, Kim YM. Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens. J Agric Food Chem. 2021;69:2979–3004.

    Article  PubMed  CAS  Google Scholar 

  59. Koga M, Nakagawa S, Kato A, Kusumi I. Caffeic acid reduces oxidative stress and microglial activation in the mouse hippocampus. Tissue Cell. 2019;60:14–20.

    Article  PubMed  CAS  Google Scholar 

  60. Muhammad Abdul Kadar NN, Ahmad F, Teoh SL, Yahaya MF. Caffeic acid on metabolic syndrome: a review. Molecules. 2021;26:4777.

    Article  Google Scholar 

  61. He F, Ru X. Wen T. Nrf2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21:4777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yang C, Zhang X, Fan H, Liu Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res. 2009;1282:133–41.

    Article  PubMed  CAS  Google Scholar 

  63. Rojo AI, Rada P, Egea J, Rosa AO, López MG, Cuadrado A. Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol Cell Neurosci. 2008;39:125–32.

    Article  PubMed  CAS  Google Scholar 

  64. Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, et al. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of alzheimer’s disease. Mol Neurobiol. 2018;55:6076–93.

    Article  PubMed  CAS  Google Scholar 

  65. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830:3143–53.

    Article  PubMed  CAS  Google Scholar 

  66. Hribljan V, Lisjak D, Petrović DJ, Mitrečić D. Necroptosis is one of the modalities of cell death accompanying ischemic brain stroke: from pathogenesis to therapeutic possibilities. Croat Med J. 2019;60:121–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018;98:813–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dodson M, Castro-Portuguez R, Zhang DD. Nrf2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.

    Article  PubMed  CAS  Google Scholar 

  70. Lu Y, Yang Q, Su Y, Ji Y, Li G, Yang X, et al. Mycn mediates tfrc-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. Cell Death Dis. 2021;12:511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. Acsl4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98.

    Article  PubMed  CAS  Google Scholar 

  72. Shimada K, Hayano M, Pagano NC, Stockwell BR. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify nadph as biomarker for ferroptosis sensitivity. Cell Chem Biol. 2016;23:225–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Klett EL, Chen S, Yechoor A, Lih FB, Coleman RA. Long-chain acyl-coa synthetase isoforms differ in preferences for eicosanoid species and long-chain fatty acids. J Lipid Res. 2017;58:884–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Klett EL, Chen S, Edin ML, Li LO, Ilkayeva O, Zeldin DC, et al. Diminished acyl-coa synthetase isoform 4 activity in ins 832/13 cells reduces cellular epoxyeicosatrienoic acid levels and results in impaired glucose-stimulated insulin secretion. J Biol Chem. 2013;288:21618–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, et al. A novel arachidonate-preferring Acyl-Coa synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA. 1997;94:2880–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Liao S, Wu J, Liu R, Wang S, Luo J, Yang Y, et al. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of AKT(ser473)/GSK3β(ser9)-mediated Nrf2 activation. Redox Biol. 2020;36:101644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. da Silveira M, Luz DACCS, da Silva CCS, Prediger RDS, Martins MD, Martins MAT, et al. Propolis: a useful agent on psychiatric and neurological disorders? A focus on cape and pinocembrin components. Med Res Rev. 2021;41:1195–215.

    Article  Google Scholar 

  78. Guruswamy R, ElAli A. Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions. Int J Mol Sci. 2017;18:496.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol. 2013;2013:746068.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in the recovery of neurological function after ischemic stroke. Front Cell Neurosci. 2022;16:1013905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kumar A, Chen SH, Kadiiska MB, Hong JS, Zielonka J, Kalyanaraman B, et al. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells. Free Radic Biol Med. 2014;73:51–9.

    Article  PubMed  CAS  Google Scholar 

  82. Yang JQ, Zhou QX, Liu BZ, He BC. Protection of mouse brain from aluminum-induced damage by caffeic acid. CNS Neurosci Ther. 2008;14:10–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Adamek A, Jung S, Dienesch C, Laser M, Ertl G, Bauersachs J, et al. Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. Eur J Pharmacol. 2007;571:51–54.

    Article  PubMed  CAS  Google Scholar 

  84. Kitagawa K, Matsumoto M, Hori M. Cerebral ischemia in 5-lipoxygenase knockout mice. Brain Res. 2004;1004:198–202.

    Article  PubMed  CAS  Google Scholar 

  85. Patel NS, Cuzzocrea S, Chatterjee PK, Di Paola R, Sautebin L, Britti D, et al. Reduction of renal ischemia-reperfusion injury in 5-lipoxygenase knockout mice and by the 5-lipoxygenase inhibitor zileuton. Mol Pharmacol. 2004;66:220–7.

    Article  PubMed  CAS  Google Scholar 

  86. Lisovyy OO, Dosenko VE, Nagibin VS, Tumanovska LV, Korol MO, Surova OV, et al. Cardioprotective effect of 5-lipoxygenase gene (ALOX5) silencing in ischemia-reperfusion. Acta Biochim Pol. 2009;56:687–94.

    Article  PubMed  CAS  Google Scholar 

  87. Shi KN, Li PB, Su HX, Gao J, Li HH. MK-886 protects against cardiac ischaemia/reperfusion injury by activating proteasome-keap1-Nrf2 signalling. Redox Biol. 2023;62:102706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Key R&D Program of China (No. 2019YFC1708901), the National Natural Science Foundation of China (No. 82073835), and the CAMS Innovation Fund for Medical Sciences (No. 2021-I2M-1-028 and 2022-I2M-2-002).

Author information

Authors and Affiliations

Authors

Contributions

XNL: Performing the experiments, Investigation, Methodology, Validation, Formal analysis, Writing the original draft; NYS: Performing the experiments, Investigation, Methodology, Validation, Formal analysis, Writing the original draft; YYK: Performing the experiments, Methodology; NS: Performing the experiments, Methodology; JQL: Performing the experiments, Methodology; JST: Performing the experiments, Methodology; LW: Methodology, Supervision; JLZ: Conceptualization, Funding acquisition, Project administration, Supervision, Validation; YP: Conceptualization, Funding acquisition, Project administration, Supervision, Validation and Writing-review. All authors have read and approved the final manuscript. All data were generated in-house and no paper mill was used. All authors agree to be accountable for all aspects of the work, ensuring its integrity and accuracy.

Corresponding authors

Correspondence to Jin-lan Zhang or Ying Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xn., Shang, Ny., Kang, Yy. et al. Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway. Acta Pharmacol Sin 45, 248–267 (2024). https://doi.org/10.1038/s41401-023-01177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01177-5

Keywords

Search

Quick links