Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protective effects of curcumin on desipramine-induced islet β-cell damage via AKAP150/PKA/PP2B complex

Abstract

Tricyclic antidepressants (TCAs) are widely used to treat depression and anxiety-related mood disorders. But evidence shows that TCAs elevate blood glucose levels and inhibit insulin secretion, suggesting that TCAs are a risk factor, particularly for individuals with diabetes. Curcumin is a bioactive molecule from the rhizome of the Curcuma longa plant, which has shown both antidepressant and anti-diabetic activities. In the present study, we investigated the protective effect of curcumin against desipramine-induced apoptosis in β cells and the underlying molecular mechanisms. In the mouse forced swimming test (FST), we found that lower doses of desipramine (5 and 10 mg/kg) or curcumin (2.5 mg/kg) alone did not affect the immobility time, whereas combined treatment with curcumin (2.5 mg/kg) and desipramine (5, 10 mg/kg) significantly decreased the immobility time. Furthermore, desipramine dose-dependently inhibited insulin secretion and elevated blood glucose levels, whereas the combined treatment normalized insulin secretion and blood glucose levels. In RIN-m5F pancreatic β-cells, desipramine (10 μM) significantly reduced the cell viability, whereas desipramine combined with curcumin dose-dependently prevented the desipramine-induced impairment in glucose-induced insulin release, most effectively with curcumin (1 and 10 μM). We demonstrated that desipramine treatment promoted the cleavage and activation of Caspase 3 in RIN-m5F cells. Curcumin treatment inhibited desipramine-induced apoptosis, increased mitochondrial membrane potential and Bcl-2/Bax ratio. Desipramine increased the generation of reactive oxygen species, which was reversed by curcumin treatment. Curcumin also inhibited the translocation of forkhead box protein O1 (FOXO1) from the cytoplasm to the nucleus and suppressed the binding of A-kinase anchor protein 150 (AKAP150) to protein phosphatase 2B (PP2B, known as calcineurin) that was induced by desipramine. These results suggest that curcumin protects RIN-m5F pancreatic β-cells against desipramine-induced apoptosis by inhibiting the phosphoinositide 3-kinase/AKT/FOXO1 pathway and the AKAP150/PKA/PP2B interaction. This study suggests that curcumin may have therapeutic potential as an adjunct to antidepressant treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of desipramine and curcumin on immobility time, blood glucose, and serum insulin levels.
Fig. 2: Effects of desipramine and curcumin on cell viability and insulin secretion in RIN-m5F cells.
Fig. 3: Effects of curcumin on desipramine-induced apoptosis in RIN-m5F cells.
Fig. 4: Effects of desipramine and curcumin on PI3K/AKT/ FOXO1 pathway in RIN-m5F cells.
Fig. 5: Effects of desipramine and curcumin on the expression of AKAP150 in RIN-m5F cells.
Fig. 6: Effects of desipramine and curcumin on interaction of AKAP150/PKA/PP2B.
Fig. 7: Schematic illustration of possible mechanisms contributing to curcumin against desipramine-induced apoptosis and insulin secretion impairment.

Similar content being viewed by others

References

  1. Smith K. Mental health: a world of depression. Nature. 2014;515:181.

    Article  PubMed  Google Scholar 

  2. Zhang Y, Liu C, Zhao Y, Zhang X, Li B, Cui R. The effects of calorie restriction in depression and potential mechanisms. Curr Neuropharmacol. 2015;13:536–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. McCarron RM, Shapiro B, Rawles J, Luo J. Depression. Ann Intern Med. 2021;174:ITC65–80.

    Article  PubMed  Google Scholar 

  4. Kapoor R, Peyear TA, Koeppe RE 2nd, Andersen OS. Antidepressants are modifiers of lipid bilayer properties. J Gen Physiol. 2019;151:342–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Arias HR, Vázquez-Gómez E, Hernández-Abrego A, Gallino S, Feuerbach D, Ortells MO, et al. Tricyclic antidepressants inhibit hippocampal α7* and α9α10 nicotinic acetylcholine receptors by different mechanisms. Int J Biochem Cell Biol. 2018;100:1–10.

    Article  PubMed  CAS  Google Scholar 

  6. Chockalingam R, Gott BM, Conway CR. Tricyclic antidepressants and monoamine oxidase inhibitors: are they too old for a new look? Handb Exp Pharmacol. 2019;250:37–48.

    Article  PubMed  CAS  Google Scholar 

  7. Arroll B, Macgillivray S, Ogston S, Reid I, Sullivan F, Williams B, et al. Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Ann Fam Med. 2005;3:449–56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brown LC, Majumdar SR, Johnson JA. Type of antidepressant therapy and risk of type 2 diabetes in people with depression. Diabetes Res Clin Pract. 2008;79:61–7.

    Article  PubMed  CAS  Google Scholar 

  9. Fang YJ, Wu TY, Lai JN, Lin CL, Tien N, Lim YP. Association between depression, antidepression medications, and the risk of developing type 2 diabetes mellitus: a nationwide population-based retrospective cohort study in Taiwan. Biomed Res Int. 2021;2021:8857230.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barnard K, Peveler RC, Holt RI. Antidepressant medication as a risk factor for type 2 diabetes and impaired glucose regulation: systematic review. Diabetes Care. 2013;36:3337–45.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tafet GE, Nemeroff CB. Pharmacological treatment of anxiety disorders: the role of the HPA axis. Front Psychiatry. 2020;11:443.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deuschle M. Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults. Curr Opin Psychiatry. 2013;26:60–5.

    Article  PubMed  Google Scholar 

  13. McIntyre RS, Soczynska JK, Konarski JZ, Kennedy SH. The effect of antidepressants on glucose homeostasis and insulin sensitivity: synthesis and mechanisms. Expert Opin Drug Saf. 2006;5:157–68.

    Article  PubMed  CAS  Google Scholar 

  14. Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019;24:2930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Al-Karawi D, Al Mamoori DA, Tayyar Y. The role of curcumin administration in patients with major depressive disorder: mini meta-analysis of clinical trials. Phytother Res. 2016;30:175–83.

    Article  PubMed  CAS  Google Scholar 

  16. Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol. 2012;26:1512–24.

    Article  PubMed  CAS  Google Scholar 

  17. Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients. 2019;11:1837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wu LY, Chen CW, Chen LK, Chou HY, Chang CL, Juan CC. Curcumin attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation. Nutrients. 2019;11:2307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, et al. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct. 2021;12:12235–49.

    Article  PubMed  CAS  Google Scholar 

  20. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 2012;35:2121–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zaheri Z, Fahremand F, Rezvani ME, Karimollah A, Moradi A. Curcumin exerts beneficial role on insulin resistance through modulation of SOCS3 and Rac-1 pathways in type 2 diabetic rats. J Funct Foods. 2019;60. https://doi.org/10.1016/j.jff.2019.103430.

  22. Asadi S, Gholami MS, Siassi F, Qorbani M, Sotoudeh G. Beneficial effects of nano-curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: a randomized, double-blind, placebo-controlled clinical trial. Phytother Res. 2020;34:896–903.

    Article  PubMed  CAS  Google Scholar 

  23. Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, et al. The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol. 2005;518:40–6.

    Article  PubMed  CAS  Google Scholar 

  24. Hao F, Kang J, Cao Y, Fan S, Yang H, An Y, et al. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis. 2015;20:1420–32.

    Article  PubMed  CAS  Google Scholar 

  25. Bogdanova OV, Kanekar S, D’Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav. 2013;118:227–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee JW, Chen H, Pullikotil P, Quon MJ. Protein kinase A-alpha directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA. J Biol Chem. 2011;286:6423–32.

    Article  PubMed  CAS  Google Scholar 

  27. Teo AK, Kulkarni RN. Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor. EMBO J. 2012;31:3956–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hinke SA, Navedo MF, Ulman A, Whiting JL, Nygren PJ, Tian G, et al. Anchored phosphatases modulate glucose homeostasis. EMBO J. 2012;31:3991–4004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Khatlani T, Pradhan S, Da Q, Gushiken FC, Bergeron AL, Langlois KW, et al. The β isoform of the catalytic subunit of protein phosphatase 2B restrains platelet function by suppressing outside-in αII b β3 integrin signaling. J Thromb Haemost. 2014;12:2089–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lester LB, Faux MC, Nauert JB, Scott JD. Targeted protein kinase A and PP-2B regulate insulin secretion through reversible phosphorylation. Endocrinology. 2001;142:1218–27.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang B, Sun P, Shen C, Liu X, Sun J, Li D, et al. Role and mechanism of PI3K/AKT/FoxO1/PDX-1 signaling pathway in functional changes of pancreatic islets in rats after severe burns. Life Sci. 2020;258:118145.

    Article  PubMed  CAS  Google Scholar 

  32. Kikuchi O, Kobayashi M, Amano K, Sasaki T, Kitazumi T, Kim HJ, et al. FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization. PLoS One. 2012;7:e32249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kitamura T. The role of FOXO1 in β-cell failure and type 2 diabetes mellitus. Nat Rev Endocrinol. 2013;9:615–23.

    Article  PubMed  CAS  Google Scholar 

  34. Wang RH, Xu X, Kim HS, Xiao Z, Deng CX. SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation. Int J Biol Sci. 2013;9:934–46.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd, Wright CV, et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002;110:1839–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lorberbaum DS, Sussel L. A Notch in time: spatiotemporal analysis of Notch signaling during pancreas development. Dev Cell. 2020;52:681–2.

    Article  PubMed  CAS  Google Scholar 

  37. Bartolome A, Zhu C, Sussel L, Pajvani UB. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest. 2019;129:268–80.

    Article  PubMed  Google Scholar 

  38. Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med. 2020;24:12355–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen JW, Kong ZL, Tsai ML, Lo CY, Ho CT, Lai CS. Tetrahydrocurcumin ameliorates free fatty acid-induced hepatic steatosis and improves insulin resistance in HepG2 cells. J Food Drug Anal. 2018;26:1075–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol. 2016;57:R93–108.

    Article  PubMed  CAS  Google Scholar 

  41. Dyla M, Kjaergaard M. Intrinsic disorder in protein kinase A anchoring proteins signaling complexes. Prog Mol Biol Transl Sci. 2021;183:271–94.

    Article  PubMed  CAS  Google Scholar 

  42. Lester LB, Langeberg LK, Scott JD. Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci USA. 1997;94:14942–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gold MG. Swimming regulations for protein kinase A catalytic subunit. Biochem Soc Trans. 2019;47:1355–66.

    Article  PubMed  CAS  Google Scholar 

  44. Creamer TP. Calcineurin. Cell Commun Signal. 2020;18:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ni Q, Ganesan A, Aye-Han NN, Gao X, Allen MD, Levchenko A, et al. Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat Chem Biol. 2011;7:34–40.

    Article  PubMed  CAS  Google Scholar 

  46. Moita MA, Lamprecht R, Nader K, LeDoux JE. A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nat Neurosci. 2002;5:837–8.

    Article  PubMed  CAS  Google Scholar 

  47. Antoine MH, Gall D, Schiffmann SN, Lebrun P. Tricyclic antidepressant imipramine reduces the insulin secretory rate in islet cells of Wistar albino rats through a calcium antagonistic action. Diabetologia. 2004;47:909–16.

    Article  PubMed  CAS  Google Scholar 

  48. Lee JY, Lee S, Choi JH, Na K. ι-Carrageenan nanocomposites for enhanced stability and oral bioavailability of curcumin. Biomater Res. 2021;25:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 92168120, 81974506, 81673486 and 81373405 to Lu Tie, No. 82073878, 81020108031 and 81874318 to Xue-jun Li), and the Beijing Natural Science Foundation (No. Z200019 and 7172119) to Lu Tie.

Author information

Authors and Affiliations

Authors

Contributions

The work presented was performed in collaboration by all authors. MH, JYC, and YH designed and performed the experiments, analyzed the data, and wrote the manuscript. KC, FH, JSK, and YP performed the experiments. LT and XJL designed the research and supervised the study. MH, JYC, YH, LT, and XJL revised the concept, designed the research, supervised the study, and wrote the manuscript.

Corresponding authors

Correspondence to Lu Tie or Xue-jun Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Cai, Jy., He, Y. et al. Protective effects of curcumin on desipramine-induced islet β-cell damage via AKAP150/PKA/PP2B complex. Acta Pharmacol Sin 45, 327–338 (2024). https://doi.org/10.1038/s41401-023-01176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01176-6

Keywords

Search

Quick links