Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reexamining the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin

Abstract

Higher drug loading employed in nanoscale delivery platforms is a goal that researchers have long sought after. But such viewpoint remains controversial because the impacts that nanocarriers bring about on bodies have been seriously overlooked. In the present study we investigated the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin (PLD). We prepared PLDs with two different drug loading rates: high drug loading rate, H-Dox, 12.9% w/w Dox/HSPC; low drug loading rate, L-Dox, 2.4% w/w Dox/HSPC (L-Dox had about 5 folds drug carriers of H-Dox at the same Dox dose). The pharmaceutical properties and biological effects of H-Dox and L-Dox were compared in mice, rats or 4T1 subcutaneous tumor-bearing mice. We showed that the lowering of doxorubicin loading did not cause substantial shifts to the pharmaceutical properties of PLDs such as in vitro and in vivo stability (stable), anti-tumor effect (equivalent effective), as well as tissue and cellular distribution. Moreover, it was even more beneficial for mitigating the undesired biological effects caused by PLDs, through prolonging blood circulation and alleviating cutaneous accumulation in the presence of pre-existing anti-PEG Abs due to less opsonins (e.g. IgM and C3) deposition on per particle. Our results warn that the effects of drug loading would be much more convoluted than expected due to the complex intermediation between nanocarriers and bodies, urging independent investigation for each individual delivery platform to facilitate clinical translation and application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of H-Dox and L-Dox.
Fig. 2: Pharmacokinetic profiles of PEGylated liposomes (sLips) with or without Dox administered to SD rats.
Fig. 3: Pharmacokinetic profiles and protein coronas of H-Dox and L-Dox in SD rats with or without the presence of anti-PEG antibodies (Abs).
Fig. 4: Cutaneous accumulation of H-Dox and L-Dox in BALB/c mice with or without prestimulation with anti-PEG Abs.
Fig. 5: Immunogenicity of H-Dox and L-Dox in SD rats.
Fig. 6: Pharmacodynamics and biosafety of H-Dox and L-Dox in 4T1 subcutaneous tumor-bearing BALB/c mice.
Fig. 7: Pharmacokinetic profiles and tissue distribution of H-Dox and L-Dox in 4T1 subcutaneous tumor-bearing BALB/c mice.
Fig. 8: In vivo cellular uptake of carriers with different lipid concentrations in BALB/c mice.
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the supplementary information. All other data are available from the authors upon reasonable request.

References

  1. Langer R. Drug delivery and targeting. Nature. 1998;392:5–10.

    CAS  PubMed  Google Scholar 

  2. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.

    Article  CAS  PubMed  Google Scholar 

  3. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.

    Article  Google Scholar 

  4. Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964;8:660–8.

    Article  CAS  PubMed  Google Scholar 

  5. Gregoriadis G, Wills EJ, Swain CP, Tavill AS. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet. 1974;1:1313–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10:853–8.

    Article  PubMed  Google Scholar 

  7. Duggan ST, Keating GM. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi’s sarcoma. Drugs. 2011;71:2531–58.

    Article  CAS  PubMed  Google Scholar 

  8. Barenholz Y. Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–34.

    Article  CAS  PubMed  Google Scholar 

  9. Akhtar N, Mohammed SA, Singh V, Abdellatif AA, Mohammad HA, Ahad A, et al. Liposome-based drug delivery of various anticancer agents of synthetic and natural product origin: a patent overview. Pharm Pat Anal. 2020;9:87–116.

    Article  CAS  PubMed  Google Scholar 

  10. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 2006;1:297–315.

    CAS  Google Scholar 

  11. Maiti P. Drug-delivery vehicles and their efficiency toward cancer treatment. Nanomed (Lond). 2020;15:1637–40.

    Article  CAS  Google Scholar 

  12. Kita K, Dittrich C. Drug delivery vehicles with improved encapsulation efficiency: taking advantage of specific drug–carrier interactions. Expert Opin Drug Deliv. 2011;8:329–42.

    Article  CAS  PubMed  Google Scholar 

  13. Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19:566–75.

    Article  CAS  PubMed  Google Scholar 

  14. Gerecke C, Edlich A, Giulbudagian M, Schumacher F, Zhang N, Said A, et al. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicology. 2017;11:267–77.

    Article  CAS  PubMed  Google Scholar 

  15. Park H, Park K. Biocompatibility issues of implantable drug delivery systems. Pharmacol Res. 1996;13:1770–6.

    Article  CAS  Google Scholar 

  16. Tang Y, Wang X, Li J, Nie Y, Liao G, Yu Y, et al. Overcoming the reticuloendothelial system barrier to drug delivery with a “Don’t-Eat-Us” strategy. ACS Nano. 2019;13:13015–26.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Tang I, Wainberg ZA, Meng H. Safety considerations of cancer nanomedicine—a key step toward translation. Small. 2020;16:e2000673.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brand W, Noorlander CW, Giannakou C, De Jong WH, Kooi MW, Park MV, et al. Nanomedicinal products: a survey on specific toxicity and side effects. Int J Nanomed. 2017;12:6107–29.

    Article  CAS  Google Scholar 

  19. Caracciolo G. Liposome-protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines. Nanomedicine. 2015;11:543–57.

    Article  CAS  PubMed  Google Scholar 

  20. Zahednezhad F, Saadat M, Valizadeh H, Zakeri-Milani P, Baradaran B. Liposome and immune system interplay: challenges and potentials. J Control Release. 2019;305:194–209.

    Article  CAS  PubMed  Google Scholar 

  21. Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater. 2021;134:57–78.

    Article  CAS  PubMed  Google Scholar 

  22. Yang K, Reker-Smit C, Stuart MCA, Salvati A. Effects of protein source on liposome uptake by cells: Corona composition and impact of the excess free proteins. Adv Health Mater. 2021;10:e2100370.

    Article  Google Scholar 

  23. Moghimi SM, Hamad I. Liposome-mediated triggering of complement cascade. J Liposome Res. 2008;18:195–209.

    Article  CAS  PubMed  Google Scholar 

  24. Yan X, Scherphof GL, Kamps JA. Liposome opsonization. J Liposome Res. 2005;15:109–39.

    Article  CAS  PubMed  Google Scholar 

  25. Clogston JD. The importance of nanoparticle physicochemical characterization for immunology research: what we learned and what we still need to understand. Adv Drug Deliv Rev. 2021;176:113897.

    Article  CAS  PubMed  Google Scholar 

  26. Luo R, Li Y, He M, Zhang H, Yuan H, Johnson M, et al. Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations. Int J Pharm. 2017;519:1–10.

    Article  CAS  PubMed  Google Scholar 

  27. Judson I, Radford JA, Harris M, Blay JY, van Hoesel Q, le Cesne A, et al. Randomised phase II trial of pegylated liposomal doxorubicin (DOXILI/CAELYXI) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 2001;37:870–7.

    Article  CAS  PubMed  Google Scholar 

  28. Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, et al. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother. 2017;95:1209–18.

    Article  CAS  PubMed  Google Scholar 

  29. DOXIL® (doxorubicin HCl liposome injection) for intravenous infusion, https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/050718s029lbl.pdf (2007).

  30. Lotem M, Hubert A, Lyass O, Goldenhersh MA, Ingber A, Peretz T, et al. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol. 2000;136:1475–80.

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Lofchy L, Wang G, Gaikwad H, Fujita M, Simberg D. PEGylated liposomes accumulate in the areas relevant to skin toxicities via passive extravasation across “Leaky” Endothelium. ACS Nano. 2022;16:6349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151:201–15.

    Article  CAS  PubMed  Google Scholar 

  33. Chu Y, Tang W, Zhang Z, Li C, Qian J, Wei X, et al. Deciphering protein Corona by scFv-based affinity chromatography. Nano Lett. 2021;21:2124–31.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Z, Chu Y, Li C, Tang W, Qian J, Wei X, et al. Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. J Control Release. 2021;330:493–501.

    Article  CAS  PubMed  Google Scholar 

  35. Tang W, Zhang Z, Li C, Chu Y, Qian J, Ying T, et al. Facile separation of PEGylated liposomes enabled by anti-PEG scFv. Nano Lett. 2021;21:10107–13.

    Article  CAS  PubMed  Google Scholar 

  36. Choi WG, Kim DK, Shin Y, Park R, Cho YY, Lee JY, et al. Liquid chromatography-tandem mass spectrometry for the simultaneous determination of doxorubicin and its metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. Molecules. 2020;25:1254.

  37. Wei X, Shamrakov D, Nudelman S, Peretz-Damari S, Nativ-Roth E, Regev O, et al. Cardinal role of intraliposome doxorubicin-sulfate nanorod crystal in doxil properties and performance. ACS Omega. 2018;3:2508–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    Article  CAS  PubMed  Google Scholar 

  39. Chen BM, Su YC, Chang CJ, Burnouf PA, Chuang KH, Chen CH, et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal Chem. 2016;88:10661–6.

    Article  CAS  PubMed  Google Scholar 

  40. Povsic TJ, Lawrence MG, Lincoff AM, Mehran R, Rusconi CP, Zelenkofske SL, et al. Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J Allergy Clin Immunol. 2016;138:1712–5.

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Ding T, Guan J, Liu X, Wang J, Jin P, et al. Interrogation of Folic Acid-functionalized nanomedicines: the regulatory roles of plasma proteins reexamined. ACS Nano. 2020;14:14779–89.

    Article  CAS  PubMed  Google Scholar 

  42. Ding T, Guan J, Wang M, Long Q, Liu X, Qian J, et al. Natural IgM dominates in vivo performance of liposomes. J Control Release. 2020;319:371–81.

    Article  CAS  PubMed  Google Scholar 

  43. Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20:710–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:655–77.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kozma GT, Shimizu T, Ishida T, Szebeni J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev. 2020;154-155:163–75.

    Article  CAS  PubMed  Google Scholar 

  46. Tan LA, Yu B, Sim FC, Kishore U, Sim RB. Complement activation by phospholipids: the interplay of factor H and C1q. Protein Cell. 2010;1:1033–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawanishi M, Hashimoto Y, Shimizu T, Sagawa I, Ishida T, Kiwada H. Comprehensive analysis of PEGylated liposome-associated proteins relating to the accelerated blood clearance phenomenon by combination with shotgun analysis and conventional methods. Biotechnol Appl Biochem. 2015;62:547–55.

    Article  CAS  PubMed  Google Scholar 

  48. Sun X, Yan X, Jacobson O, Sun W, Wang Z, Tong X, et al. Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics. 2017;7:319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tavares AJ, Poon W, Zhang YN, Dai Q, Besla R, Ding D, et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci USA. 2017;114:E10871–E80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blandino R, Baumgarth N. Secreted IgM: new tricks for an old molecule. J Leukoc Biol. 2019;106:1021–34.

    Article  CAS  PubMed  Google Scholar 

  51. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hadjidemetriou M, McAdam S, Garner G, Thackeray C, Knight D, Smith D, et al. The human in vivo biomolecule Corona onto PEGylated liposomes: a proof-of-concept clinical study. Adv Mater. 2019;31:e1803335.

    Article  PubMed  Google Scholar 

  53. Ju Y, Kelly HG, Dagley LF, Reynaldi A, Schlub TE, Spall SK, et al. Person-specific biomolecular Coronas modulate nanoparticle interactions with immune cells in human blood. ACS Nano. 2020;14:15723–37.

    Article  CAS  PubMed  Google Scholar 

  54. Vu VP, Gifford GB, Chen F, Benasutti H, Wang G, Groman EV, et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol. 2019;14:260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guan J, Shen Q, Zhang Z, Jiang Z, Yang Y, Lou M, et al. Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption. Nat Commun. 2018;9:2982.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Neun B, Barenholz Y, Szebeni J, Dobrovolskaia M. Understanding the role of anti-PEG antibodies in the complement activation by Doxil in vitro. Molecules. 2018;23:1700.

  57. Ishida T, Atobe K, Wang X, Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release. 2006;115:251–8.

    Article  CAS  PubMed  Google Scholar 

  58. Shimizu T, Ishida T, Kiwada H. Transport of PEGylated liposomes from the splenic marginal zone to the follicle in the induction phase of the accelerated blood clearance phenomenon. Immunobiology. 2013;218:725–32.

    Article  CAS  PubMed  Google Scholar 

  59. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-induced generation of splenic Erythroblast-like Ter-cells promotes tumor progression. Cell. 2018;173:634–48.

    Article  CAS  PubMed  Google Scholar 

  60. Tanaka K, Koga Y, Taniguchi K, Kamikaseda K, Nihashi Y, Nomoto K. T-cell recruitment from the thymus to the spleen in tumor-bearing mice. II. Functional characteristics of recruited T -cells. J Natl Cancer Inst. 1986;77:733–8.

    Article  CAS  PubMed  Google Scholar 

  61. Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol. 2019;4:eaau6085.

  62. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606–16.

    Article  CAS  PubMed  Google Scholar 

  63. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306–21.

    Article  CAS  PubMed  Google Scholar 

  64. Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19:384–408.

    Article  CAS  PubMed  Google Scholar 

  65. Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor-Vascular Disrupting Agents. Cancer Treat Rev. 2011;37:63–74.

    Article  CAS  PubMed  Google Scholar 

  66. Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5:166.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27:1482–92.

    Article  CAS  PubMed  Google Scholar 

  68. Ouyang B, Poon W, Zhang YN, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour delivery. Nat Mater. 2020;19:1362–71.

    Article  CAS  PubMed  Google Scholar 

  69. Proffitt RT, Williams LE, Presant CA, Tin GW, Uliana JA, Gamble RC, et al. Liposoinal blockade of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles. Science. 1983;220:502–5.

    Article  CAS  PubMed  Google Scholar 

  70. Liu T, Choi H, Zhou R, Chen IW. RES blockade: a strategy for boosting efficiency of nanoparticle drug. Nano Today. 2015;10:11–21.

    Article  Google Scholar 

  71. Szebeni J, Baranyi L, Savay S, Milosevits J, Bunger R, Laverman P, et al. Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J Liposome Res. 2002;12:165–72.

    Article  CAS  PubMed  Google Scholar 

  72. Estape Senti M, de Jongh CA, Dijkxhoorn K, Verhoef JJF, Szebeni J, Storm G, et al. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J Control Release. 2022;341:475–86.

    Article  CAS  PubMed  Google Scholar 

  73. Chen E, Chen BM, Su YC, Chang YC, Cheng TL, Barenholz Y, et al. Premature drug release from polyethylene glycol (PEG)-coated liposomal doxorubicin via formation of the membrane attack complex. ACS Nano. 2020;14:7808–22.

    Article  CAS  PubMed  Google Scholar 

  74. Gabizon A. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42:419–36.

  75. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.

    Article  CAS  PubMed  Google Scholar 

  76. Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079.

    Article  CAS  PubMed  Google Scholar 

  77. Liposome Drug Products: Chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation, https://www.fda.gov/media/70837/download (2018).

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (82273866, 82125035, 81973245) and Shanghai Education Commission Major Project (2021-01-07-00-07-E00081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Qian, Kuan Jiang or Chang-you Zhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Yf., Wu, Ec., Lin, Sq. et al. Reexamining the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin. Acta Pharmacol Sin 45, 646–659 (2024). https://doi.org/10.1038/s41401-023-01169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01169-5

Keywords

Search

Quick links