Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sphingosylphosphorylcholine alleviates pressure overload-induced myocardial remodeling in mice via inhibiting CaM-JNK/p38 signaling pathway

Abstract

Apoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor. In this study we investigated the role of CaM in cardiomyocyte apoptosis in heart failure and the associated signaling pathways. Pressure overload was induced in mice by trans-aortic constriction (TAC) surgery. TAC mice were administered SPC (10 μM·kg−1·d−1) for 4 weeks post-surgery. We showed that SPC administration significantly improved survival rate and cardiac hypertrophy, and inhibited cardiac fibrosis in TAC mice. In neonatal mouse cardiomyocytes, treatment with SPC (10 μM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, fibroblast-to-myofibroblast transition and cell apoptosis accompanied by reduced Bax and phosphorylation levels of CaM, JNK and p38, as well as upregulated Bcl-2, a cardiomyocyte-protective protein. Thapsigargin (TG) could enhance CaM functions by increasing Ca2+ levels in cytoplasm. TG (3 μM) annulled the protective effect of SPC against Ang II-induced cardiomyocyte apoptosis. Furthermore, we demonstrated that SPC-mediated inhibition of cardiomyocyte apoptosis involved the regulation of p38 and JNK phosphorylation, which was downstream of CaM. These results offer new evidence for SPC regulation of cardiomyocyte apoptosis, potentially providing a new therapeutic target for cardiac remodeling following stress overload.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SPC improves survival and cardiac hypertrophy in mice induced by pressure overload.
Fig. 2: SPC reduces fibrosis in pressure overload mice.
Fig. 3: SPC reduces AngII-induced hypertrophy in vitro.
Fig. 4: SPC inhibits fibroblast differentiation into myofibroblasts.
Fig. 5: SPC protects CMs from AngII-induced cell apoptosis.
Fig. 6: SPC alleviates AngII-induced cardiac hypertrophy by inhibiting CaM.
Fig. 7: Activation of CaM inhibited the anti-apoptotic effect of SPC on CMs.
Fig. 8: SPC alleviates AngII-induced cardiomyocyte apoptosis by inhibiting CaM.
Fig. 9: P38/JNK is involved in CaM-mediated apoptosis under AngII stimulation.
Fig. 10: SPC reduces apoptosis in mice under pressure overload.

Similar content being viewed by others

References

  1. Eriksson H. Heart failure: a growing public health problem. J Intern Med. 1995;237:135–41.

    Article  PubMed  CAS  Google Scholar 

  2. Feldman DI, Dudum R, Alfaddagh A, Marvel FA, Michos ED, Blumenthal RS, et al. Summarizing 2019 in Cardiovascular Prevention Using the Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease’s ‘ABC’s Approach. Am J Prev Cardiol. 2020;2:100027.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596–e646.

    PubMed  PubMed Central  Google Scholar 

  4. Vegter EL, Ovchinnikova ES, van Veldhuisen DJ, Jaarsma T, Berezikov E, van der Meer P, et al. Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin Res Cardiol. 2017;106:598–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ogawa K, Hirooka Y, Kishi T, Ide T, Sunagawa K. Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure. PLoS One. 2013;8:e69053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zannad F, Stough WG, Pitt B, Cleland JG, Adams KF, Geller NL, et al. Heart failure as an endpoint in heart failure and non-heart failure cardiovascular clinical trials: the need for a consensus definition. Eur Heart J. 2008;29:413–21.

    Article  PubMed  Google Scholar 

  7. Varian K, Xu WD, Lin W, Unai S, Tong MZ, Soltesz E, et al. Minimally invasive biventricular mechanical circulatory support with Impella pumps as a bridge to heart transplantation: a first-in-the-world case report. ESC Heart Fail. 2019;6:552–4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carson P. Beta-blocker therapy in heart failure. Cardiol Clin. 2001;19:267–78.

    Article  PubMed  CAS  Google Scholar 

  9. Ritsinger V, Nyström T, Saleh N, Lagerqvist B, Norhammar A. Heart failure is a common complication after acute myocardial infarction in patients with diabetes: A nationwide study in the SWEDEHEART registry. Eur J Prev Cardiol. 2020;27:1890–901.

    Article  PubMed  Google Scholar 

  10. Kochar A, Doll JA, Liang L, Curran J, Peterson ED. Temporal trends in post myocardial infarction heart failure and outcomes among older adults. J Card Fail. 2022;28:531–9.

    Article  PubMed  Google Scholar 

  11. Cleland JG, Torabi A, Khan NK. Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart. 2005;91:ii7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grazette LP, Rosenzweig A. Role of apoptosis in heart failure. Heart Fail Clin. 2005;1:251–61.

    Article  PubMed  Google Scholar 

  13. Yang B, Ye D, Wang Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets. 2013;17:255–63.

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Qi Q, Yang WC, Zhang TL, Lu CC, Yao YJ, et al. Sphingosylphosphorylcholine alleviates hypoxia-caused apoptosis in cardiac myofibroblasts via CaM/p38/STAT3 pathway. Apoptosis. 2020;25:853–63.

    Article  PubMed  CAS  Google Scholar 

  15. Kovacs E, Liliom K. Sphingosylphosphorylcholine as a novel calmodulin inhibitor. Biochem J. 2008;410:427–37.

    Article  PubMed  CAS  Google Scholar 

  16. Kovacs E, Tóth J, Vértessy BG, Liliom K. Dissociation of calmodulin-target peptide complexes by the lipid mediator sphingosylphosphorylcholine: implications in calcium signaling. J Biol Chem. 2010;285:1799–808.

    Article  PubMed  CAS  Google Scholar 

  17. Moore SE, Walsh FS. Specific regulation of N-CAM/D2-CAM cell adhesion molecule during skeletal muscle development. EMBO J. 1985;4:623–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kitani T, Okuno S, Takeuchi M, Fujisawa H. Subcellular distributions of rat CaM kinase phosphatase N and other members of the CaM kinase regulatory system. J Neurochem. 2003;86:77–85.

    Article  PubMed  CAS  Google Scholar 

  19. Zhao Y, Hu HY, Sun DR, Feng R, Sun XF, Guo F, et al. Dynamic alterations in the CaV1.2/CaM/CaMKII signaling pathway in the left ventricular myocardium of ischemic rat hearts. DNA Cell Biol. 2014;33:282–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Thanassoulas A, Vassilakopoulou V, Calver BL, Buntwal L, Smith A, Lai C, et al. Life-threatening arrhythmogenic CaM mutations disrupt CaM binding to a distinct RyR2 CaM-binding pocket. Biochim Biophys Acta Gen Subj. 2023;1867:130313.

    Article  PubMed  CAS  Google Scholar 

  21. Obata K, Nagata K, Iwase M, Odashima M, Nagasaka T, Izawa H, et al. Overexpression of calmodulin induces cardiac hypertrophy by a calcineurin-dependent pathway. Biochem Biophys Res Commun. 2005;338:1299–305.

    Article  PubMed  CAS  Google Scholar 

  22. deAlmeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp. 2010;38:e1729.

  23. Ehler E, Moore-Morris T, Lange S. Isolation and culture of neonatal mouse cardiomyocytes. J Vis Exp. 2013;79:e50154.

  24. Komamura K. Similarities and differences between the pathogenesis and pathophysiology of diastolic and systolic heart failure. Cardiol Res Pr. 2013;2013:824135.

    Google Scholar 

  25. Anselmi A, Lotrionte M, Biondi-Zoccai GG, Galiuto L, Abbate A. Left ventricular hypertrophy, apoptosis, and progression to heart failure in severe aortic stenosis. Eur Heart J. 2005;26:2747.

    Article  PubMed  Google Scholar 

  26. Kang PM, Izumo S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med. 2003;9:177–82.

    Article  PubMed  CAS  Google Scholar 

  27. Davies MJ. Apoptosis in cardiovascular disease. Heart. 1997;77:498–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Razavi HM, Hamilton JA, Feng Q. Modulation of apoptosis by nitric oxide: implications in myocardial ischemia and heart failure. Pharmacol Ther. 2005;106:147–62.

    Article  PubMed  CAS  Google Scholar 

  29. Chen M, Fu H, Zhang J, Huang H, Zhong P. CIRP downregulation renders cardiac cells prone to apoptosis in heart failure. Biochem Biophys Res Commun. 2019;517:545–50.

    Article  PubMed  CAS  Google Scholar 

  30. Jose Corbalan J, Vatner DE, Vatner SF. Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol. 2016;111:31.

    Article  PubMed  CAS  Google Scholar 

  31. Boguslawski G, Lyons D, Harvey KA, Kovala AT, English D. Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. Biochem Biophys Res Commun. 2000;272:603–9.

    Article  PubMed  CAS  Google Scholar 

  32. Yasui K, Palade P. Sphingolipid actions on sodium and calcium currents of rat ventricular myocytes. Am J Physiol. 1996;270:C645–9.

    Article  PubMed  CAS  Google Scholar 

  33. Todoroki-Ikeda N, Mizukami Y, Mogami K, Kusuda T, Yamamoto K, Miyake T, et al. Sphingosylphosphorylcholine induces Ca2+-sensitization of vascular smooth muscle contraction: possible involvement of rho-kinase. FEBS Lett. 2000;482:85–90.

    Article  PubMed  CAS  Google Scholar 

  34. Matsuzaki M, Matsuda M, Kobayashi S. Sphingosylphosphorylcholine induces cytosolic Ca2+ elevation in endothelial cells in situ and causes endothelium-dependent relaxation through nitric oxide production in bovine coronary artery. FEBS Lett. 1999;457:375–80.

    Article  PubMed  Google Scholar 

  35. Herzog C, Schmitz M, Levkau B, Herrgott I, Mersmann J, Larmann J, et al. Intravenous sphingosylphosphorylcholine protects ischemic and postischemic myocardial tissue in a mouse model of myocardial ischemia/reperfusion injury. Mediators Inflamm. 2010;2010:425191.

    Article  PubMed  Google Scholar 

  36. Schmidt A, Geigenmüller S, Völker W, Buddecke E. The antiatherogenic and antiinflammatory effect of HDL-associated lysosphingolipids operates via Akt–>NF-kappaB signalling pathways in human vascular endothelial cells. Basic Res Cardiol. 2006;101:109–16.

    Article  PubMed  CAS  Google Scholar 

  37. Jeon ES, Lee MJ, Sung SM, Kim JH. Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem. 2007;100:1536–47.

    Article  PubMed  CAS  Google Scholar 

  38. Ge D, Jing Q, Meng N, Su L, Zhang Y, Zhang S, et al. Regulation of apoptosis and autophagy by sphingosylphosphorylcholine in vascular endothelial cells. J Cell Physiol. 2011;226:2827–33.

    Article  PubMed  CAS  Google Scholar 

  39. Knapp M. Cardioprotective role of sphingosine-1-phosphate. J Physiol Pharmacol. 2011;62:601–7.

    PubMed  CAS  Google Scholar 

  40. Spiegel S, Milstien S. Functions of a new family of sphingosine-1-phosphate receptors. Biochim Biophys Acta. 2000;1484:107–16.

    Article  PubMed  CAS  Google Scholar 

  41. Means CK, Brown JH. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res. 2009;82:193–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yan H, Yi S, Zhuang H, Wu L, Wang DW, Jiang J. Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2. Int J Mol Med. 2018;41:1704–14.

    PubMed  CAS  Google Scholar 

  43. Meyer zu Heringdorf D, Jakobs KH. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta. 2007;1768:923–40.

    Article  PubMed  CAS  Google Scholar 

  44. Davis J, Molkentin JD. Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol. 2014;70:9–18.

    Article  PubMed  CAS  Google Scholar 

  45. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118:1021–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Stempien-Otero A, Kim DH, Davis J. Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol. 2016;97:153–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98:1627–738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eguchi A, Coleman R, Gresham K, Gao E, Ibetti J, Chuprun JK, et al. GRK5 is a regulator of fibroblast activation and cardiac fibrosis. Proc Natl Acad Sci USA. 2021;118:e2012854118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004;94:110–8.

    Article  PubMed  CAS  Google Scholar 

  50. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wilkins BJ, Molkentin JD. Calcineurin and cardiac hypertrophy: where have we been? Where are we going? J Physiol. 2002;541:1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ritter O, Hack S, Schuh K, Röthlein N, Perrot A, Osterziel KJ, et al. Calcineurin in human heart hypertrophy. Circulation. 2002;105:2265–9.

    Article  PubMed  CAS  Google Scholar 

  53. Federico M, Portiansky EL, Sommese L, Alvarado FJ, Blanco PG, Zanuzzi CN, et al. Calcium-calmodulin-dependent protein kinase mediates the intracellular signalling pathways of cardiac apoptosis in mice with impaired glucose tolerance. J Physiol. 2017;595:4089–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yue HW, Liu J, Liu PP, Li WJ, Chang F, Miao JY, et al. Sphingosylphosphorylcholine protects cardiomyocytes against ischemic apoptosis via lipid raft/PTEN/Akt1/mTOR mediated autophagy. Biochim Biophys Acta. 2015;1851:1186–93.

    Article  PubMed  CAS  Google Scholar 

  55. Jiang SJ, Wang W. Research progress on the role of CaMKII in heart disease. Am J Transl Res. 2020;12:7625–39.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51:468–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Quetglas S, Iborra C, Sasakawa N, De Haro L, Kumakura K, Sato K, et al. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J. 2002;21:3970–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tan R, You Q, Cui J, Wang M, Song N, An K, et al. Sodium houttuyfonate against cardiac fibrosis attenuates isoproterenol-induced heart failure by binding to MMP2 and p38. Phytomedicine. 2023;109:154590.

    Article  PubMed  CAS  Google Scholar 

  59. Pan Z, Zhao W, Zhang X, Wang B, Wang J, Sun X, et al. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFbeta1 expression and activation of p38-MAPK and ERK1/2. Br J Pharmacol. 2011;162:688–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Marber MS, Rose B, Wang Y. The p38 mitogen-activated protein kinase pathway–a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol. 2011;51:485–90.

    Article  PubMed  CAS  Google Scholar 

  61. Kyoi S, Otani H, Matsuhisa S, Akita Y, Tatsumi K, Enoki C, et al. Opposing effect of p38 MAP kinase and JNK inhibitors on the development of heart failure in the cardiomyopathic hamster. Cardiovasc Res. 2006;69:888–98.

    Article  PubMed  CAS  Google Scholar 

  62. Nishida K, Yamaguchi O, Hirotani S, Hikoso S, Higuchi Y, Watanabe T, et al. p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol Cell Biol. 2004;24:10611–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Behr TM, Nerurkar SS, Nelson AH, Coatney RW, Woods TN, Sulpizio A, et al. Hypertensive end-organ damage and premature mortality are p38 mitogen-activated protein kinase-dependent in a rat model of cardiac hypertrophy and dysfunction. Circulation. 2001;104:1292–8.

    Article  PubMed  CAS  Google Scholar 

  64. See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, et al. p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol. 2004;44:1679–89.

    Article  PubMed  CAS  Google Scholar 

  65. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, et al. The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest. 2002;110:271–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Grant No. LZ23H020001 from the Key Natural Science Foundation of Zhejiang Province and Xinmiao Talent Program of Zhejiang Province (Grant No. 2023R413084).

Author information

Authors and Affiliations

Authors

Contributions

FFR carried out the study and wrote the paper; FFR, LZ, and XYJ carried out the animal model, RT-qPCR, Western blotting experiments; JJZ and JMG carried out the cell culture and echocardiographic analysis; XYY and SJW analyzed the data. LL conceived and supervised the study.

Corresponding author

Correspondence to Lei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Ff., Zhao, L., Jiang, Xy. et al. Sphingosylphosphorylcholine alleviates pressure overload-induced myocardial remodeling in mice via inhibiting CaM-JNK/p38 signaling pathway. Acta Pharmacol Sin 45, 312–326 (2024). https://doi.org/10.1038/s41401-023-01168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01168-6

Keywords

Search

Quick links