Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sirtuin 6 protects against podocyte injury by blocking the renin-angiotensin system by inhibiting the Wnt1/β-catenin pathway

Abstract

Sirtuins (Sirts) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases that share diverse cellular functions. Increasing evidence shows that Sirts play a critical role in podocyte injury, which is a major determinant of proteinuria-associated renal disease. Membranous nephropathy (MN) is a typical glomerular disease in which podocyte damage mediates proteinuria development. In this study we investigated the molecular mechanisms underlying the regulatory roles of Sirt in podocyte injury in MN patients, rats with cationic bovine serum albumin (CBSA)-induced MN and zymosan activation serum (ZAS)-stimulated podocytes. Compared with healthy controls, MN patients showed significant reduction in intrarenal Sirt1 and Sirt6 protein expression. In CBSA-induced MN rats, significant reduction in intrarenal Sirt1, Sirt3 and Sirt6 protein expression was observed. However, only significant decrease in Sirt6 protein expression was found in ZAS-stimulated podocytes. MN patients showed significantly upregulated protein expression of Wnt1 and β-catenin and renin-angiotensin system (RAS) components in glomeruli. CBSA-induced MN rats exhibited significantly upregulated protein expression of intrarenal Wnt1 and β-catenin and their downstream gene products as well as RAS components. Similar results were observed in ZAS-stimulated podocytes. In ZAS-stimulated podocytes, treatment with a specific Sirt6 activator UBCS039 preserved the protein expression of podocin, nephrin and podocalyxin, accompanied by significant inhibition of the protein expression of β-catenin and its downstream gene products, including Snail1 and Twist; treatment with a β-catenin inhibitor ICG-001 significantly preserved the expression of podocyte-specific proteins and inhibited the upregulation of downstream β-catenin gene products accompanied by significant suppression of the protein expression of RAS components. Thus, we demonstrate that Sirt6 ameliorates podocyte injury by blocking RAS signalling via the Wnt1/β-catenin pathway. Sirt6 is a specific therapeutic target for the treatment of podocyte damage-associated renal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intrarenal Sirt deficiency, a hyperactive Wnt1/β-catenin pathway and RAS overexpression in MN patients.
Fig. 2: Renal function decline and renal injury in CBSA-induced rats.
Fig. 3: Podocyte injury and downregulated protein expression of Sirts in CBSA-induced rats.
Fig. 4: Activation of the Wnt1/β-catenin pathway and RAS signalling in CBSA-induced rats.
Fig. 5: Sirt6 deficiency exacerbated podocyte injury in ZAS-stimulated podocytes.
Fig. 6: Activation of the Wnt1/β-catenin pathway and RAS signalling in ZAS-stimulated podocytes.
Fig. 7: Sirt6 reduced podocyte injury by blocking RAS signalling via the Wnt1/β-catenin pathway.
Fig. 8: Summary of the underlying molecular mechanism of Sirt6 deficiency, the hyperactive Wnt1/β-catenin pathway and RAS overexpression in podocyte injury.

Similar content being viewed by others

References

  1. Morigi M, Perico L, Benigni A. Sirtuins in renal health and disease. J Am Soc Nephrol. 2018;29:1799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qi W, Hu C, Zhao D, Li X. SIRT1-SIRT7 in diabetic kidney disease: biological functions and molecular mechanisms. Front Endocrinol (Lausanne). 2022;13:801303.

    Article  PubMed  Google Scholar 

  3. Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, et al. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother. 2022;155:113620.

    Article  CAS  PubMed  Google Scholar 

  4. Zhong Y, Lee K, He JC. SIRT1 is a potential drug target for treatment of diabetic kidney disease. Front Endocrinol (Lausanne). 2018;9:624.

    Article  PubMed  Google Scholar 

  5. Li P, Liu Y, Qin X, Chen K, Wang R, Yuan L, et al. SIRT1 attenuates renal fibrosis by repressing HIF-2α. Cell Death Discov. 2021;7:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jung YJ, Park W, Kang KP, Kim W. SIRT2 is involved in cisplatin-induced acute kidney injury through regulation of mitogen-activated protein kinase phosphatase-1. Nephrol Dial Transpl. 2020;35:1145–56.

    Article  CAS  Google Scholar 

  7. Feng X, Su H, He X, Chen JX, Zeng H. SIRT3 deficiency sensitizes angiotensin-II-induced renal fibrosis. Cells. 2020;9:2510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi JX, Wang QJ, Li H, Huang Q. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp Ther Med. 2017;13:342–48.

    Article  CAS  PubMed  Google Scholar 

  9. Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun. 2017;8:413.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Z, Xu K, Zhang N, Amador G, Wang Y, Zhao S, et al. Overexpressed SIRT6 attenuates cisplatin-induced acute kidney injury by inhibiting ERK1/2 signaling. Kidney Int. 2018;93:881–92.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou L, Liu Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol. 2015;11:535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang YN, Feng HY, Nie X, Zhang YM, Zou L, Li X, et al. Recent advances in clinical diagnosis and pharmacotherapy options of membranous nephropathy. Front Pharmacol. 2022;13:907108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miao H, Zhang YM, Yu XY, Zou L, Zhao YY. Membranous nephropathy: systems biology-based novel mechanism and traditional Chinese medicine therapy. Front Pharmacol. 2022;13:969930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao YY. Recent advances of gut microbiota in chronic kidney disease patients. Explor Med. 2022;3:260–74.

    Article  CAS  Google Scholar 

  15. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol. 2015;26:107–20.

    Article  CAS  PubMed  Google Scholar 

  16. Kiewisz J, Skowronska A, Winiarska A, Pawlowska A, Kiezun J, Rozicka A, et al. Wnt4 expression in primary and secondary kidney diseases: dependence on staging. Kidney Blood Press Res. 2019;44:200–10.

    Article  CAS  PubMed  Google Scholar 

  17. Gao Y, Dai H, Zhang N, Jiang H, Zhang Z, Feng Z, et al. The ameliorative effect of Mahuang fuzi and shenzhuo decoction on membranous nephropathy of rodent model is associated with autophagy and Wnt/β-catenin pathway. Front Pharmacol. 2022;13:820130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong Z, Dai H, Gao Y, Feng Z, Liu W, Liu F, et al. Inhibition of the Wnt/β-catenin signaling pathway reduces autophagy levels in complement treated podocytes. Exp Ther Med. 2021;22:737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao S, Cui Z, Zhao MH. Complement C3a and C3a receptor activation mediates podocyte injuries in the mechanism of primary membranous nephropathy. J Am Soc Nephrol. 2022;33:1742–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai J, Liu Z, Huang X, Shu S, Hu X, Zheng M, et al. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int. 2020;97:106–18.

    Article  CAS  PubMed  Google Scholar 

  21. Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review. JAMA. 2019;322:1294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seitz-Polski B, Dahan K, Debiec H, Rousseau A, Andreani M, Zaghrini C, et al. High-dose rituximab and early remission in PLA2R1-related membranous nephropathy. Clin J Am Soc Nephrol. 2019;14:1173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang YN, Miao H, Hua MR, Yang JZ, Pei M, Yu HX, et al. Moshen granule ameliorates membranous nephropathy by blocking intrarenal renin-angiotensin system signalling via the Wnt1/β-catenin pathway. Phytomedicine. 2023;114:154763.

    Article  CAS  PubMed  Google Scholar 

  24. Miao H, Cao G, Wu XQ, Chen YY, Chen DQ, Chen L, et al. Identification of endogenous 1-aminopyrene as a novel mediator of progressive chronic kidney disease via aryl hydrocarbon receptor activation. Br J Pharmacol. 2020;177:3415–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miao H, Wu XQ, Wang YN, Chen DQ, Chen L, Vaziri ND, et al. 1-Hydroxypyrene mediates renal fibrosis through aryl hydrocarbon receptor signalling pathway. Br J Pharmacol. 2022;179:103–24.

    Article  CAS  PubMed  Google Scholar 

  26. Cao G, Miao H, Wang YN, Chen DQ, Wu XQ, Chen L, et al. Intrarenal 1-methoxypyrene, an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice. Acta Pharmacol Sin. 2022;43:2929–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo LP, Suo P, Ren LL, Liu HJ, Zhang Y, Zhao YY. Shenkang injection and its three anthraquinones ameliorates renal fibrosis by simultaneous targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways. Front Pharmacol. 2021;12:800522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zuo Y, Liu Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis. Nephrol (Carlton). 2018;23:38–43.

    Article  CAS  Google Scholar 

  29. Fan Y, Cheng J, Yang Q, Feng J, Hu J, Ren Z, et al. Sirt6-mediated Nrf2/HO-1 activation alleviates angiotensin II-induced DNA DSBs and apoptosis in podocytes. Food Funct. 2021;12:7867–82.

    Article  CAS  PubMed  Google Scholar 

  30. Fan Y, Yang Q, Yang Y, Gao Z, Ma Y, Zhang L, et al. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int J Biol Sci. 2019;15:701–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Q, Hu J, Yang Y, Chen Z, Feng J, Zhu Z, et al. Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes. Theranostics. 2020;10:7465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Border WA, Ward HJ, Kamil ES, Cohen AH. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen. J Clin Invest. 1982;69:451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ji L, Chen Y, Wang H, Zhang W, He L, Wu J, et al. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int J Oncol. 2019;55:103–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Z, Liang W, Hu J, Zhu Z, Feng J, Ma Y, et al. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Prolif. 2022;55:e13296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev. 2020;60:101063.

    Article  CAS  PubMed  Google Scholar 

  36. Garg M, Maurya N. Wnt/β-catenin signaling in urothelial carcinoma of bladder. World J Nephrol. 2019;8:83–94.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, et al. Targeting the Wnt/β-catenin signaling pathway as a potential therapeutic strategy in renal tubulointerstitial fibrosis. Front Pharmacol. 2021;12:719880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, et al. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res. 2021;163:105316.

    Article  CAS  PubMed  Google Scholar 

  39. Chen DQ, Wu XQ, Chen L, Hu HH, Wang YN, Zhao YY. Poricoic acid A as a modulator of TPH-1 expression inhibits renal fibrosis via modulating protein stability of β-catenin and β-catenin-mediated transcription. Ther Adv Chronic Dis. 2020;11:2040622320962648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu D, Chen L, Zhao H, Vaziri ND, Ma SC, Zhao YY. Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother. 2019;117:108990.

    Article  CAS  PubMed  Google Scholar 

  41. Bhullar SK, Shah AK, Dhalla NS. Role of angiotensin II in the development of subcellular remodeling in heart failure. Explor Med. 2021;2:352–71.

    Article  CAS  Google Scholar 

  42. Rossi GP, Lenzini L, Caroccia B, Rossitto G, Seccia TM. Angiotensin peptides in the regulation of adrenal cortical function. Explor Med. 2021;2:294–304.

  43. Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol. 2017;28:1040–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lalouel JM, Rohrwasser A, Terreros D, Morgan T, Ward K. Angiotensinogen in essential hypertension: from genetics to nephrology. J Am Soc Nephrol. 2001;12:606–15.

    Article  CAS  PubMed  Google Scholar 

  45. Satirapoj B, Siritaweesuk N, Supasyndh O. Urinary angiotensinogen as a potential biomarker of diabetic nephropathy. Clin Kidney J. 2014;7:354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishiyama A, Konishi Y, Ohashi N, Morikawa T, Urushihara M, Maeda I, et al. Urinary angiotensinogen reflects the activity of intrarenal renin-angiotensin system in patients with IgA nephropathy. Nephrol Dial Transpl. 2011;26:170–7.

    Article  CAS  Google Scholar 

  47. Jang HR, Jeon J, Park JH, Lee JE, Huh W, Oh HY, et al. Clinical relevance of urinary angiotensinogen and renin as potential biomarkers in patients with overt proteinuria. Transl Res. 2014;164:400–10.

    Article  CAS  PubMed  Google Scholar 

  48. Urushihara M, Kondo S, Kagami S, Kobori H. Urinary angiotensinogen accurately reflects intrarenal renin-angiotensin system activity. Am J Nephrol. 2010;31:318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mezzano SA, Aros CA, Droguett A, Burgos ME, Ardiles LG, Flores CA, et al. Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. Kidney Int Suppl. 2003:86:S39–45.

  50. Tang Z, Wang Y, Tao L, Guo Y, Zheng Y, Zheng D. The elevated levels of urinary angiotensinogen are correlated with the severity of idiopathic membranous nephropathy. BMC Nephrol. 2018;19:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohashi N, Aoki T, Matsuyama T, Ishigaki S, Isobe S, Katahashi N, et al. The urinary angiotensinogen to urinary albumin ratio reflects whether the renin-angiotensin system in the kidney is activated due to filtration of plasma angiotensinogen through the damaged glomeruli or the production of angiotensinogen in the proximal tubules. Intern Med. 2020;59:357–64.

    Article  CAS  PubMed  Google Scholar 

  52. Bertelli R, Bonanni A, Di Donato A, Cioni M, Ravani P, Ghiggeri GM. Regulatory T cells and minimal change nephropathy: in the midst of a complex network. Clin Exp Immunol. 2016;183:166–74.

    Article  CAS  PubMed  Google Scholar 

  53. Zoja C, Corna D, Camozzi D, Cattaneo D, Rottoli D, Batani C, et al. How to fully protect the kidney in a severe model of progressive nephropathy: a multidrug approach. J Am Soc Nephrol. 2002;13:2898–908.

    Article  CAS  PubMed  Google Scholar 

  54. Dikow R, Quentmeier P, Schwenger V, Waldherr R, Andrassy K, Ritz E, et al. Optimal blood pressure control versus additional immunosuppressive therapy in idiopathic membranous nephropathy - a retrospective analysis. Clin Nephrol. 2009;72:366–72.

    Article  CAS  PubMed  Google Scholar 

  55. Wang M, Chen DQ, Chen L, Cao G, Zhao H, Liu D, et al. Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis. Br J Pharmacol. 2018;175:2689–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang YN, Liu HJ, Ren LL, Suo P, Zou L, Zhang YM, et al. Shenkang injection improves chronic kidney disease by inhibiting multiple renin-angiotensin system genes by blocking the Wnt/β-catenin signalling pathway. Front Pharmacol. 2022;13:964370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research & Development Program of China (No. 2019YFC1709405), the National Natural Science Foundation of China (No. 82274192, 82174366, 82074002, 82274079), the Shaanxi Key Research & Development Program (No. 2023-ZDLSF-26) and the Inheritance and Innovation of Traditional Chinese Medicine & Key Scientific Research on the Development of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine (No. 2021-03-22-005).

Author information

Authors and Affiliations

Authors

Contributions

YYZ conceived and designed the experiments. HM, YNW and YYZ conducted the experiments and analysed the data. HM and YYZ performed the statistical analysis. XYY and WS collected the clinical samples. YYZ wrote the initial draft of the paper. LZ, SGZ and FL revised the paper. All authors have critically revised the paper and approved the final version.

Corresponding authors

Correspondence to Xiao-yong Yu, Fei Liu or Ying-yong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Wang, Yn., Su, W. et al. Sirtuin 6 protects against podocyte injury by blocking the renin-angiotensin system by inhibiting the Wnt1/β-catenin pathway. Acta Pharmacol Sin 45, 137–149 (2024). https://doi.org/10.1038/s41401-023-01148-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01148-w

Keywords

Search

Quick links