Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting cytohesin-1 suppresses acute myeloid leukemia progression and overcomes resistance to ABT-199

Abstract

Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrant expression of CYTH1 in AML is associated with poor prognosis.
Fig. 2: CYTH1 is required for AML adhesion and migration in vitro.
Fig. 3: CYTH1 is required for AML homing and engraftment in vivo.
Fig. 4: SencinH3 attenuates AML cell growth by inhibiting adhesion and survival programs.
Fig. 5: SecinH3 inhibits the growth of AML xenograft tumors.
Fig. 6: SecinH3 sensitizes AML cells to ABT-199.
Fig. 7: SecinH3 overcomes resistance to ABT-199 by modulating MCL1 expression.

Similar content being viewed by others

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Eng J Med. 2015;373:1136–52.

    Article  Google Scholar 

  2. Thol F, Ganser A. Treatment of relapsed acute myeloid leukemia. Curr Treat Options Oncol. 2020;21:66.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thol F, Heuser M. Treatment for relapsed/refractory acute myeloid leukemia. Hemasphere. 2021;5:e572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location first: targeting acute myeloid leukemia within its niche. J Clin Med. 2020;9:1513.

  5. Bazzoni R, Tanasi I, Turazzi N, Krampera M. Update on the role and utility of extracellular vesicles in hematological malignancies. Stem Cells (Dayt, Ohio). 2022;40:619–29.

    Article  Google Scholar 

  6. Gruszka AM, Valli D, Restelli C, Alcalay M. Adhesion deregulation in acute myeloid leukaemia. Cells. 2019;8:66.

  7. Haltalli MLR, Lo Celso C. Targeting adhesion to the vascular niche to improve therapy for acute myeloid leukemia. Nat Commun. 2020;11:3691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rak J, Foster K, Potrzebowska K, Talkhoncheh MS, Miharada N, Komorowska K, et al. Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells. Blood. 2017;129:950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. El azreq M-A, Bourgoin SG. Cytohesin-1 regulates human blood neutrophil adhesion to endothelial cells through β2 integrin activation. Mol Immunol. 2011;48:1408–16.

    Article  CAS  PubMed  Google Scholar 

  10. Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Förster R, et al. Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood. 2009;113:5801–10.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao H, Ahirwar DK, Oghumu S, Wilkie T, Powell CA, Nasser MW, et al. Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis. Mol Oncol. 2016;10:272–81.

    Article  CAS  PubMed  Google Scholar 

  12. Weizhong Z, Shuohui G, Hanjiao Q, Yuhong M, Xiaohua Y, Jian C, et al. Inhibition of cytohesin-1 by siRNA leads to reduced IGFR signaling in prostate cancer. Braz J Med Biol. 2011;44:642–6.

    Google Scholar 

  13. Lin S-Y, Hu F-F, Miao Y-R, Hu H, Lei Q, Zhang Q, et al. Identification of STAB1 in multiple datasets as a prognostic factor for cytogenetically normal AML: mechanism and drug indications. Mol Ther Nucleic Acids. 2019;18:476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bagger FO, Kinalis S, Rapin N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 2019;47:D881–85.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang L, Yu G, Meng W, Wang Z, Meng F, Ma W. Overexpression of amyloid precursor protein in acute myeloid leukemia enhances extramedullary infiltration by MMP-2. Tumour Biol. 2013;34:629–36.

    Article  CAS  PubMed  Google Scholar 

  17. Hsiao YH, Su SC, Lin CW, Chao YH, Yang WE, Yang SF. Pathological and therapeutic aspects of matrix metalloproteinases: implications in childhood leukemia. Cancer Metastasis Rev. 2019;38:829–37.

    Article  PubMed  Google Scholar 

  18. Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun. 2018;9:5379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hafner M, Schmitz A, Grüne I, Srivatsan SG, Paul B, Kolanus W, et al. Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature. 2006;444:941–4.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021;138:1120–36.

    Article  CAS  PubMed  Google Scholar 

  21. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Eng J Med. 2020;383:617–29.

    Article  CAS  Google Scholar 

  23. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022;50:W739–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8:1566–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22:45–64.

    Article  CAS  PubMed  Google Scholar 

  26. Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20:303–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/β-catenin/CCND1 signaling. J Clin Invest. 2018;128:1737–51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barbier V, Erbani J, Fiveash C, Davies JM, Tay J, Tallack MR, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat Commun. 2020;11:2042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Whiteley AE, Price TT, Cantelli G, Sipkins DA. Leukaemia: a model metastatic disease. Nat Rev Cancer. 2021;21:461–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol. 2017;44:101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hong Z, Wei Z, Xie T, Fu L, Sun J, Zhou F, et al. Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol. 2021;14:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brower V. Adhesion molecules, stem cells, and the microenvironment in acute myeloid leukemia. J Natl Cancer Inst. 2016;108:djw113.

  33. Bakst RL, Tallman MS, Douer D, Yahalom J. How I treat extramedullary acute myeloid leukemia. Blood. 2011;118:3785–93.

    Article  CAS  PubMed  Google Scholar 

  34. Yang LX, Zhang CT, Yang MY, Zhang XH, Liu HC, Luo CH, et al. C1Q labels a highly aggressive macrophage-like leukemia population indicating extramedullary infiltration and relapse. Blood. 2023;141:766–86.

    Article  CAS  PubMed  Google Scholar 

  35. Hira VVV, Van Noorden CJF, Carraway HE, Maciejewski JP, Molenaar RJ. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches. Biochim Biophys Acta Rev Cancer. 2017;1868:183–98.

    Article  CAS  PubMed  Google Scholar 

  36. Yao H, Price TT, Cantelli G, Ngo B, Warner MJ, Olivere L, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kupsa T, Horacek JM, Jebavy L. The role of adhesion molecules in acute myeloid leukemia and (hemato)oncology: a systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:1–11.

  38. Raspadori D, Lauria F, Ventura MA, Rondelli D, Tura S. Expression of adhesion molecules on acute leukemic blast cells and sensitivity to normal LAK activity. Ann Hematol. 1993;67:213–6.

    Article  CAS  PubMed  Google Scholar 

  39. Reina M, Espel E. Role of LFA-1 and ICAM-1 in cancer. Cancers (Basel). 2017;9:153.

  40. Iyer V, Pumiglia K, DiPersio CM. Alpha3beta1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: a novel mechanism of integrin-mediated MMP gene expression. J Cell Sci. 2005;118:1185–95.

    Article  CAS  PubMed  Google Scholar 

  41. Crisp JL, Savariar EN, Glasgow HL, Ellies LG, Whitney MA, Tsien RY. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Mol Cancer Ther. 2014;13:1514–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics. 2013;3:34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EGE, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49:219–30.

    Article  CAS  PubMed  Google Scholar 

  44. Bill A, Schmitz A, König K, Heukamp LC, Hannam JS, Famulok M. Anti-proliferative effect of cytohesin inhibition in gefitinib-resistant lung cancer cells. PLoS One. 2012;7:e41179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan T, Sun J, Hu J, Hu Y, Zhou J, Chen Z, et al. Cytohesins/ARNO: the function in colorectal cancer cells. PLoS One. 2014;9:e90997.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Archimbaud E, Charrin C, Magaud JP, Campos L, Thomas X, Fiere D, et al. Clinical and biological characteristics of adult de novo and secondary acute myeloid leukemia with balanced 11q23 chromosomal anomaly or MLL gene rearrangement compared to cases with unbalanced 11q23 anomaly: confirmation of the existence of different entities with 11q23 breakpoint. Leukemia. 1998;12:25–33.

    Article  CAS  PubMed  Google Scholar 

  47. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood. 2003;102:2395–402.

    Article  CAS  PubMed  Google Scholar 

  48. Wang R, Xie S, Zhu S, Sun Y, Shi B, Li D, et al. Targeting matrix metallopeptidase 2 by hydroxyurea selectively kills acute myeloid mixed-lineage leukemia. Cell Death Discov. 2022;8:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aubrey BJ, Cutler JA, Bourgeois W, Donovan KA, Gu S, Hatton C, et al. IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. Nat Cancer. 2022;3:595–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang H, Xiao YS, Zhou W, Li YH. Integrated analysis and validation reveal CYTH4 as a potential prognostic biomarker in acute myeloid leukemia, 2023, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-2986303/v1.

  51. Bisaillon R, Moison C, Thiollier C, Krosl J, Bordeleau M-E, Lehnertz B, et al. Genetic characterization of ABT-199 sensitivity in human AML. Leukemia. 2020;34:63–74.

    Article  PubMed  Google Scholar 

  52. Thijssen R, Tian L, Anderson MA, Flensburg C, Jarratt A, Garnham AL, et al. Single-cell multiomics reveal the scale of multilayered adaptations enabling CLL relapse during venetoclax therapy. Blood. 2022;140:2127–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81974221, 81974009, 81470330, and 81272624) and the Natural Science Foundation of Henan (232300421280).

Author information

Authors and Affiliations

Authors

Contributions

QBL and ZCC conceived and designed the study. ZCC and KSZ supervised the study. WXR and HG performed most of the experiments. SYL, SYC, YYL, LYX, DW, YLC, JQ, BLY, HPX, HL, YLY, AYZ, SW, and YCZ helped with data analysis and manuscript revision. HG wrote the manuscript. All of the authors have contributed to this work.

Corresponding authors

Correspondence to Ke-shu Zhou, Zhi-chao Chen or Qiu-bai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Wx., Guo, H., Lin, Sy. et al. Targeting cytohesin-1 suppresses acute myeloid leukemia progression and overcomes resistance to ABT-199. Acta Pharmacol Sin 45, 180–192 (2024). https://doi.org/10.1038/s41401-023-01142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01142-2

Keywords

Search

Quick links