Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heat shock protein family A member 8 serving as a co-activator of transcriptional factor ETV4 up-regulates PHLDA2 to promote the growth of liver cancer

Abstract

Heat shock protein family A member 8 (HSPA8) participates in the folding or degradation of misfolded proteins under stress and plays critical roles in cancer. In this study, we investigated the function of HSPA8 in the development of liver cancer. By analyzing the TCGA transcriptome dataset, we found that HSPA8 was upregulated in 134 clinical liver cancer tissue samples, and positively correlated with poor prognosis. IHC staining showed the nuclear and cytoplasmic localization of HSPA8 in liver cancer cells. Knockdown of HSPA8 resulted in a decrease in the proliferation of HepG2 and Huh-7 cells. ChIP-seq and RNA-seq analysis revealed that HSPA8 bound to the promoter of pleckstrin homology-like domain family A member 2 (PHLDA2) and regulated its expression. The transcription factor ETV4 in HepG2 cells activated PHLDA2 transcription. HSPA8 and ETV4 could interact with each other in the cells and colocalize in the nucleus. From a functional perspective, we demonstrated that HSPA8 upregulated PHDLA2 through the coactivating transcription factor ETV4 to enhance the growth of liver cancer in vitro and in vivo. From a therapeutic perspective, we identified both HSPA8 and PHDLA2 as novel targets in the treatment of HCC. In conclusion, this study demonstrates that HSPA8 serves as a coactivator of ETV4 and upregulates PHLDA2, leading to the growth of HCC, and is a potential therapeutic target in HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HSPA8 is overexpressed in HCC and positively correlates with poor prognosis.
Fig. 2: HSPA8 is able to promote the growth of liver cancer in vitro and in vivo.
Fig. 3: HSPA8 was identified to bind to the PHLDA2 promoter region.
Fig. 4: HSPA8 activates PHLDA2 transcription to enhance the growth of liver cancer in vitro and in vivo.
Fig. 5: HSPA8 coactivates the transcription factor ETV4 by binding to ETV4 in the promoter of PHLDA2 to upregulate PHLDA2.
Fig. 6: The HSPA8 mediated increase in PHLDA2 expression contributes to the growth of liver cancer in vitro and in vivo.

Similar content being viewed by others

References

  1. Sangro B, Melero I, Wadhawan S, Finn RS, Abou-Alfa GK, Cheng AL, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol. 2020;73:1460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, et al. Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun. 2018;9:4700–16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonam SR, Ruff M, Muller S. Hspa8/hsc70 in immune disorders: a molecular rheostat that adjusts chaperone-mediated autophagy substrates. Cells. 2019;8:849–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rai R, Kennedy AL, Isingizwe ZR, Javadian P, Benbrook DM. Similarities and differences of HSP70, HSC70, GRP78, and mortalin as cancer biomarkers and drug targets. Cells. 2021;10:2996–3014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong J, Wu Z, Wang D, Pascal LE, Nelson JB, Wipf P, et al. Hsp70 binds to the androgen receptor N-terminal domain and modulates the receptor function in prostate cancer cells. Mol Cancer Ther. 2019;18:39–50.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka M, Mun S, Harada A, Ohkawa Y, Inagaki A, Sano S, et al. Hsc70 contributes to cancer cell survival by preventing rab1a degradation under stress conditions. PLoS One. 2014;9:e96785–95.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsuda Y, Ishiwata T, Yoshimura H, Hagio M, Arai T. Inhibition of nestin suppresses stem cell phenotype of glioblastomas through the alteration of post-translational modification of heat shock protein HSPA8/HSC71. Cancer Lett. 2015;357:602–11.

    Article  CAS  PubMed  Google Scholar 

  8. Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182:1044–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. Hsp70 multi-functionality in cancer. Cells. 2020;9:587–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mishra PB, Lobo AS, Joshi KS, Rathos MJ, Kumar GA, Padigaru M. Molecular mechanisms of anti-tumor properties of p276-00 in head and neck squamous cell carcinoma. J Transl Med. 2013;11:42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Razidlo GL, Wang Y, Chen J, Krueger EW, Billadeau DD, McNiven MA. Dynamin 2 potentiates invasive migration of pancreatic tumor cells through stabilization of the Rac1 GEF Vav1. Dev Cell. 2013;24:573–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang F, Xie HY, Yang LF, Zhang L, Zhang FL, Liu HY, et al. Stabilization of MORC2 by estrogen and antiestrogens through the GPER1-PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy. 2020;16:1061–76.

    Article  CAS  PubMed  Google Scholar 

  13. Wang B, Lan T, Xiao H, Chen ZH, Wei C, Chen LF, et al. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int. 2021;21:286–302.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Desideri E, Castelli S, Dorard C, Toifl S, Grazi GL, Ciriolo MR, et al. Impaired degradation of YAP1 and IL6ST by chaperone-mediated autophagy promotes proliferation and migration of normal and hepatocellular carcinoma cells. Autophagy. 2022;19:1–11.

  15. Khosla R, Hemati H, Rastogi A, Ramakrishna G, Sarin SK, Trehanpati N. Mir-26b-5p helps in EpCAM+cancer stem cells maintenance via HSC71/HSPA8 and augments malignant features in hcc. Liver Int. 2019;39:1692–703.

    Article  CAS  PubMed  Google Scholar 

  16. Reitman ZJ, Paolella BR, Bergthold G, Pelton K, Becker S, Jones R, et al. Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nat Commun. 2019;10:3731–47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Feng Y, Pauklin S. Revisiting 3d chromatin architecture in cancer development and progression. Nucleic Acids Res. 2020;48:10632–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan H, Zhao L, Yuan Y, Yun H, Zheng W, Geng Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics. 2021;11:8362–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heidari Z, Chrisman IM, Nemetchek MD, Novick SJ, Blayo AL, Patton T, et al. Definition of functionally and structurally distinct repressive states in the nuclear receptor ppargamma. Nat Commun. 2019;10:5825–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chittori S, Hong J, Bai Y, Subramaniam S. Structure of the primed state of the atpase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Res. 2019;47:9400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levine M, Tjian R. Transcription regulation and animal diversity. Nature. 2003;424:147–51.

    Article  CAS  PubMed  Google Scholar 

  22. Haberle V, Arnold CD, Pagani M, Rath M, Schernhuber K, Stark A. Transcriptional cofactors display specificity for distinct types of core promoters. Nature. 2019;570:122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang H, Zhang S, Zhang Y, Jia J, Wang J, Liu X, et al. TAZ is indispensable for c-Myc-induced hepatocarcinogenesis. J Hepatol. 2022;76:123–34.

    Article  CAS  PubMed  Google Scholar 

  24. Piccinin E, Villani G, Moschetta A. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol. 2019;16:160–74.

    Article  CAS  PubMed  Google Scholar 

  25. Liu L, Lin J, He H. Identification of potential crucial genes associated with the pathogenesis and prognosis of endometrial cancer. Front Genet. 2019;10:373–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, et al. Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of passenger strand of pre-mir-148a on gene regulation. Cancer Sci. 2018;109:2013–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma Z, Lou S, Jiang Z. PHLDA2 regulates emt and autophagy in colorectal cancer via the PI3K/Akt signaling pathway. Aging (Albany NY). 2020;12:7985–8000.

    Article  CAS  PubMed  Google Scholar 

  28. Moon HG, Oh K, Lee J, Lee M, Kim JY, Yoo TK, et al. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. Breast Cancer Res Treat. 2015;154:13–22.

    Article  PubMed  Google Scholar 

  29. Zhao GS, Gao ZR, Zhang Q, Tang XF, Lv YF, Zhang ZS, et al. Tssc3 promotes autophagy via inactivating the src-mediated PI3K/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis. J Exp Clin Cancer Res. 2018;37:188–204.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tran KA, Pietrzak SJ, Zaidan NZ, Siahpirani AF, McCalla SG, Zhou AS, et al. Defining reprogramming checkpoints from single-cell analyses of induced pluripotency. Cell Rep. 2019;27:1726–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez-Jimenez F, Muinos F, Sentis I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20:555–72.

    Article  CAS  PubMed  Google Scholar 

  32. Xu X, Wang B, Liu Y, Jing T, Xu G, Zhang L, et al. ETV4 potentiates nuclear yap retention and activities to enhance the progression of hepatocellular carcinoma. Cancer Lett. 2022;537:215640–53.

    Article  CAS  PubMed  Google Scholar 

  33. Losmanova T, Zens P, Scherz A, Schmid RA, Tschan MP, Berezowska S. Chaperone-mediated autophagy markers LAMP2a and HSPA8 in advanced non-small cell lung cancer after neoadjuvant therapy. Cells. 2021;10:2731–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao M, Yan M, Zhang J, Xu Q, Chen W. Carboxy-terminus HSC70 interacting protein exerts a tumor inhibition function in head and neck cancer. Oncol Rep. 2017;38:1629–36.

    Article  CAS  PubMed  Google Scholar 

  35. Cancer Genome Atlas Research Network. Electronic address wbe, Cancer Genome Atlas Research N. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327–41.

    Article  Google Scholar 

  36. Wang Y, Zhao M, Zhao L, Geng Y, Li G, Chen L, et al. Hbx-induced HSPA8 stimulates HBV replication and suppresses ferroptosis to support liver cancer progression. Cancer Res. 2023;83:1048–61.

    Article  CAS  PubMed  Google Scholar 

  37. Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell. 2004;119:157–67.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao M, Bu Y, Feng J, Zhang H, Chen Y, Yang G, et al. Spin1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett. 2020;470:54–63.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome data browser: Expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729–D735.

    Article  CAS  PubMed  Google Scholar 

  40. Baldavira CM, Machado-Rugolo J, Prieto TG, Bastos DR, Balancin M, Ab’Saber AM, et al. The expression patterns and prognostic significance of pleckstrin homology-like domain family a (PHLDA) in lung cancer and malignant mesothelioma. J Thorac Dis. 2021;13:689–707.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ruart M, Chavarria L, Camprecios G, Suarez-Herrera N, Montironi C, Guixe-Muntet S, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol. 2019;70:458–69.

    Article  CAS  PubMed  Google Scholar 

  42. Lahiri V, Hawkins WD, Klionsky DJ. Watch what you (self-) eat: Autophagic mechanisms that modulate metabolism. Cell Metab. 2019;29:803–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, et al. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18:50–72.

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Ge Z. High HSPA8 expression predicts adverse outcomes of acute myeloid leukemia. BMC Cancer. 2021;21:475–85.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tian Y, Xu H, Farooq AA, Nie B, Chen X, Su S, et al. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother Res. 2018;32:1320–31.

    Article  CAS  PubMed  Google Scholar 

  46. Kim E, Kim D, Lee JS, Yoe J, Park J, Kim CJ, et al. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology. 2018;67:2287–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 82103066) and the Natural Science Foundation of Tianjin Science and Technology Committee (19YFZCSY00020).

Author information

Authors and Affiliations

Authors

Contributions

SW, YFW, and GY performed most of the experiments; HHZ, HFY, CYH, LNZ, YHS, JS, LLS, and PL accomplished some of the in vitro and in vivo experiments; XDZ, WL, NNZ, and YS conceived and designed the project and wrote the manuscript.

Corresponding authors

Correspondence to Yan Sun, Ning-ning Zhang, Xiao-dong Zhang or Wei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Yf., Yang, G. et al. Heat shock protein family A member 8 serving as a co-activator of transcriptional factor ETV4 up-regulates PHLDA2 to promote the growth of liver cancer. Acta Pharmacol Sin 44, 2525–2536 (2023). https://doi.org/10.1038/s41401-023-01133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01133-3

Keywords

Search

Quick links