Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemogenetic inhibition of subicular seizure-activated neurons alleviates cognitive deficit in male mouse epilepsy model

Abstract

Cognitive deficit is a common comorbidity in temporal lobe epilepsy (TLE) and is not well controlled by current therapeutics. How epileptic seizure affects cognitive performance remains largely unclear. In this study we investigated the role of subicular seizure-activated neurons in cognitive impairment in TLE. A bipolar electrode was implanted into hippocampal CA3 in male mice for kindling stimulation and EEG recording; a special promoter with enhanced synaptic activity-responsive element (E-SARE) was used to label seizure-activated neurons in the subiculum; the activity of subicular seizure-activated neurons was manipulated using chemogenetic approach; cognitive function was assessed in object location memory (OLM) and novel object recognition (NOR) tasks. We showed that chemogenetic inhibition of subicular seizure-activated neurons (mainly CaMKIIα+ glutamatergic neurons) alleviated seizure generalization and improved cognitive performance, but inhibition of seizure-activated GABAergic interneurons had no effect on seizure and cognition. For comparison, inhibition of the whole subicular CaMKIIα+ neuron impaired cognitive function in naïve mice in basal condition. Notably, chemogenetic inhibition of subicular seizure-activated neurons enhanced the recruitment of cognition-responsive c-fos+ neurons via increasing neural excitability during cognition tasks. Our results demonstrate that subicular seizure-activated neurons contribute to cognitive impairment in TLE, suggesting seizure-activated neurons as the potential therapeutic target to alleviate cognitive impairment in TLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemogenetic inhibition of subicular seizure-activated neurons alleviates seizure generalization.
Fig. 2: Inhibition of subicular seizure-activated neurons rescues cognitive deficit in epileptic mice.
Fig. 3: Chemogenetic inhibition of whole subicular CaMKIIα+ neuron impairs cognitive function in naïve mice.
Fig. 4: Inhibition of subicular seizure-activated neurons enhances recruitment of cognition task-responsive c-fos+ neurons.
Fig. 5: Inhibition of subicular seizure-activated neurons enhances neural activity during cognition tasks.

Similar content being viewed by others

References

  1. Trinka E, Kwan P, Lee B, Dash A. Epilepsy in Asia: disease burden, management barriers, and challenges. Epilepsia. 2019;60:7–21.

    Article  PubMed  Google Scholar 

  2. Xu C, Wang Y, Zhang S, Nao J, Liu Y, Wang Y, et al. Subicular pyramidal neurons gate drug resistance in temporal lobe epilepsy. Ann Neurol. 2019;86:626–40.

    Article  CAS  PubMed  Google Scholar 

  3. Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res. 1996;26:141–50.

    Article  PubMed  Google Scholar 

  4. Phuong TH, Houot M, Méré M, Denos M, Samson S, Dupont S. Cognitive impairment in temporal lobe epilepsy: contributions of lesion, localization and lateralization. J Neurol. 2021;268:1443–52.

    Article  PubMed  Google Scholar 

  5. Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, et al. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain. 2022;146:935–53.

    Article  PubMed Central  Google Scholar 

  6. Grote A, Heiland DH, Taube J, Helmstaedter C, Ravi VM, Will P, et al. ‘Hippocampal innate inflammatory gliosis only’ in pharmacoresistant temporal lobe epilepsy. Brain. 2022;146:549–60.

    Article  PubMed Central  Google Scholar 

  7. Godrich D, Martin ER, Schellenberg G, Pericak-Vance MA, Cuccaro M, Scott WK, et al. Neuropathological lesions and their contribution to dementia and cognitive impairment in a heterogeneous clinical population. Alzheimers Dement. 2022;18:2403–12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schnier C, Duncan S, Wilkinson T. A nationwide, retrospective, data-linkage, cohort study of epilepsy and incident dementia. Neurology. 2020;95:e1686–e1693.

    Article  PubMed  Google Scholar 

  9. Lam AD, Sarkis RA. Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology. 2020;95:e2259–e2270.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaestner E, Reyes A, Chen A, Rao J, Macari AC, Choi JY, et al. Atrophy and cognitive profiles in older adults with temporal lobe epilepsy are similar to mild cognitive impairment. Brain. 2021;144:236–50.

    Article  PubMed  Google Scholar 

  11. Nickels KC, Zaccariello MJ, Hamiwka LD, Wirrell EC. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol. 2016;12:465–76.

    Article  CAS  PubMed  Google Scholar 

  12. Kahn JB, Port RG, Yue C, Takano H, Coulter DA. Circuit-based interventions in the dentate gyrus rescue epilepsy-associated cognitive dysfunction. Brain. 2019;142:2705–21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Josselyn SA, Tonegawa S. Memory engrams: recalling the past and imagining the future. Science. 2020;367:1–14.

    Article  Google Scholar 

  14. Jaworski J, Kalita K, Knapska E. c-Fos and neuronal plasticity: the aftermath of Kaczmarek’s theory. Acta Neurobiol Exp (Wars). 2018;78:287–96.

    Article  PubMed  Google Scholar 

  15. Yap EL, Greenberg ME. Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron. 2018;100:330–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naik AA, Sun H, Williams CL, Weller DS, Julius Zhu J, Kapur J. Mechanism of seizure-induced retrograde amnesia. Prog Neurobiol. 2021;200:101984.

    Article  PubMed  Google Scholar 

  17. Choy M, Dadgar-Kiani E, Cron GO, Duffy BA, Schmid F, Edelman BJ, et al. Repeated hippocampal seizures lead to brain-wide reorganization of circuits and seizure propagation pathways. Neuron. 2022;110:221–36.e224.

    Article  CAS  PubMed  Google Scholar 

  18. Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, et al. Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes. Cell. 2018;173:1280–92.e1218.

    Article  CAS  PubMed  Google Scholar 

  19. Kitanishi T, Umaba R, Mizuseki K. Robust information routing by dorsal subiculum neurons. Sci Adv. 2021;7:1–19.

    Article  Google Scholar 

  20. Torromino G, Autore L, Khalil V, Mastrorilli V, Griguoli M, Pignataro A, et al. Offline ventral subiculum-ventral striatum serial communication is required for spatial memory consolidation. Nat Commun. 2019;10:5721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Xu C, Xu Z, Ji C, Liang J, Wang Y, et al. Depolarized GABAergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron. 2017;95:92–105.e105.

    Article  CAS  PubMed  Google Scholar 

  22. Vreugdenhil M, Hoogland G, van Veelen CW, Wadman WJ. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci. 2004;19:2769–78.

    Article  PubMed  Google Scholar 

  23. Zhong K, Wu DC, Jin MM, Xu ZH, Wang Y, Hou WW, et al. Wide therapeutic time-window of low-frequency stimulation at the subiculum for temporal lobe epilepsy treatment in rats. Neurobiol Dis. 2012;48:20–6.

    Article  PubMed  Google Scholar 

  24. Knopp A, Kivi A, Wozny C, Heinemann U, Behr J. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy. J Comp Neurol. 2005;483:476–88.

    Article  PubMed  Google Scholar 

  25. Fujita S, Toyoda I, Thamattoor AK, Buckmaster PS. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy. J Neurosci. 2014;34:16671–87.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kinnavane L, Amin E, Olarte-Sánchez CM, Aggleton JP. Detecting and discriminating novel objects: the impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus. 2016;26:1393–413.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kagerer SM, Schroeder C, van Bergen JMG, Schreiner SJ, Meyer R, Steininger SC, et al. Low subicular volume as an indicator of dementia-risk susceptibility in old age. Front Aging Neurosci. 2022;14:811146.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. Handb Clin Neurol. 2020;175:223–33.

    Article  PubMed  Google Scholar 

  29. Hophing L, Kyriakopoulos P, Bui E. Sex and gender differences in epilepsy. Int Rev Neurobiol. 2022;164:235–76.

    Article  CAS  PubMed  Google Scholar 

  30. Savic I. Sex differences in human epilepsy. Exp Neurol. 2014;259:38–43.

    Article  PubMed  Google Scholar 

  31. Chen B, Xu C, Wang Y, Lin W, Wang Y, Chen L, et al. A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun. 2020;11:923.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu L, Lin W, Zheng Y, Chen J, Fang Z, Tan N, et al. An H2R-dependent medial septum histaminergic circuit mediates feeding behavior. Curr Biol. 2022;32:1937–48.e1935.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Wang Y, Xu C, Wang S, Tan N, Chen C, et al. Direct septum-hippocampus cholinergic circuit attenuates seizure through driving somatostatin inhibition. Biol Psychiatry. 2020;87:843–56.

    Article  CAS  PubMed  Google Scholar 

  34. Fei F, Wang X, Xu C, Shi J, Gong Y, Cheng H, et al. Discrete subicular circuits control generalization of hippocampal seizures. Nat Commun. 2022;13:5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato M, Racine RJ, McIntyre DC. Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol. 1990;76:459–72.

    Article  CAS  PubMed  Google Scholar 

  36. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.

    Article  CAS  PubMed  Google Scholar 

  37. Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, et al. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods. 2013;10:889–95.

    Article  CAS  PubMed  Google Scholar 

  38. Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol. 2015;55:399–417.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Liang J, Chen L, Shen Y, Zhao J, Xu C, et al. Pharmaco-genetic therapeutics targeting parvalbumin neurons attenuate temporal lobe epilepsy. Neurobiol Dis. 2018;117:149–60.

    Article  CAS  PubMed  Google Scholar 

  40. Sun Y, Jin S, Lin X, Chen L, Qiao X, Jiang L, et al. CA1-projecting subiculum neurons facilitate object-place learning. Nat Neurosci. 2019;22:1857–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol. 2001;19:137–41.

    Article  CAS  PubMed  Google Scholar 

  42. Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature. 1967;214:1020–1.

    Article  CAS  PubMed  Google Scholar 

  43. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73:1–60.

    Article  CAS  PubMed  Google Scholar 

  44. Cánovas R, León I, Serrano P, Roldán MD, Cimadevilla JM. Spatial navigation impairment in patients with refractory temporal lobe epilepsy: evidence from a new virtual reality-based task. Epilepsy Behav. 2011;22:364–9.

    Article  PubMed  Google Scholar 

  45. Bakhtiari A, Bjørke AB, Larsson PG, Olsen KB, Nævra MCJ, Taubøll E, et al. Episodic memory dysfunction and effective connectivity in adult patients with newly diagnosed nonlesional temporal lobe epilepsy. Front Neurol. 2022;13:774532.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lalani SJ, Reyes A, Kaestner E, Stark SM, Stark CEL, Lee D, et al. Impaired behavioral pattern separation in refractory temporal lobe epilepsy and mild cognitive impairment. J Int Neuropsychol Soc. 2021;28:550–62.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khodadadi M, Zare M, Rezaei M, Bakhtiarzadeh F, Barkley V, Shojaei A, et al. Effect of low frequency stimulation of olfactory bulb on seizure severity, learning, and memory in kindled rats. Epilepsy Res. 2022;188:107055.

    Article  PubMed  Google Scholar 

  48. Papadogiannis A, Dimitrov E. A possible mechanism for development of working memory impairment in male mice subjected to inflammatory pain. Neuroscience. 2022;503:17–27.

    Article  CAS  PubMed  Google Scholar 

  49. Attili SM, Moradi K, Wheeler DW, Ascoli GA. Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization. Eur J Neurosci. 2022;55:1724–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben-Ari Y, et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci. 2001;4:52–62.

    Article  CAS  PubMed  Google Scholar 

  51. Cossart R, Bernard C, Ben-Ari Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci. 2005;28:108–15.

    Article  CAS  PubMed  Google Scholar 

  52. Kanner AM, Bicchi MM. Antiseizure medications for adults with epilepsy: a review. JAMA. 2022;327:1269–81.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Chen Z. An update for epilepsy research and antiepileptic drug development: toward precise circuit therapy. Pharmacol Ther. 2019;201:77–93.

    Article  CAS  PubMed  Google Scholar 

  54. Miyakawa N, Nagai Y, Hori Y, Mimura K, Orihara A, Oyama K, et al. Chemogenetic attenuation of cortical seizures in nonhuman primates. Nat Commun. 2023;14:971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen LY, Liang J, Fei F, Ruan YP, Cheng HM, Wang Y, et al. Pharmaco-genetic inhibition of pyramidal neurons retards hippocampal kindling-induced epileptogenesis. CNS Neurosci Ther. 2020;26:1111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lieb A, Weston M, Kullmann DM. Designer receptor technology for the treatment of epilepsy. EBioMedicine. 2019;43:641–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou QG, Nemes AD, Lee D, Ro EJ, Zhang J, Nowacki AS, et al. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Invest. 2019;129:310–23.

    Article  PubMed  Google Scholar 

  58. Cǎlin A, Stancu M, Zagrean AM, Jefferys JGR, Ilie AS, Akerman CJ. Chemogenetic recruitment of specific interneurons suppresses seizure activity. Front Cell Neurosci. 2018;12:293.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20:359–68.

    Article  PubMed  Google Scholar 

  60. Robertson EM. Memory leaks: information shared across memory systems. Trends Cogn Sci. 2022;26:544–54.

    Article  PubMed  Google Scholar 

  61. Kingsbury L, Huang S, Raam T, Ye LS, Wei D, Hu RK, et al. Cortical representations of conspecific sex shape social behavior. Neuron. 2020;107:941–53.e947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fuchs WS, Leary WP, van der Meer MJ, Gay S, Witschital K, von Nieciecki A. Pharmacokinetics and bioavailability of tamoxifen in postmenopausal healthy women. Arzneimittelforschung. 1996;46:418–22.

    CAS  PubMed  Google Scholar 

  63. Li C, Lim SC, Kim J, Choi JS. Effects of myricetin, an anticancer compound, on the bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Eur J Drug Metab Pharmacokinet. 2011;36:175–82.

    Article  CAS  PubMed  Google Scholar 

  64. Lai N, Cheng H, Li Z, Wang X, Ruan Y, Qi Y, et al. Interictal-period-activated neuronal ensemble in piriform cortex retards further seizure development. Cell Rep. 2022;41:111798.

    Article  CAS  PubMed  Google Scholar 

  65. Wang C, Liu H, Li K, Wu ZZ, Wu C, Yu JY, et al. Tactile modulation of memory and anxiety requires dentate granule cells along the dorsoventral axis. Nat Commun. 2020;11:6045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gulmez Karaca K, Kupke J, Brito DVC, Zeuch B, Thome C, Weichenhan D, et al. Neuronal ensemble-specific DNA methylation strengthens engram stability. Nat Commun. 2020;11:639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Key R&D Program of China (2021ZD0202803 and 2020YFA0803902), the National Natural Science Foundation of China (82022071), and the Natural Science Foundation of Zhejiang Province (LD22H310003).

Author information

Authors and Affiliations

Authors

Contributions

ZC, LY, and YW, contributed to conception and design of the study. LY, QZ, XQW, XYQ, FF, NXL, YYZ, QYZ, MDZ, YW, FW, CLX, and YPR contributed to acquisition and analysis of data. LY, YW, and ZC contributed to drafting the manuscript and figures.

Corresponding authors

Correspondence to Yi Wang or Zhong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, Q., Wu, Xq. et al. Chemogenetic inhibition of subicular seizure-activated neurons alleviates cognitive deficit in male mouse epilepsy model. Acta Pharmacol Sin 44, 2376–2387 (2023). https://doi.org/10.1038/s41401-023-01129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01129-z

Keywords

Search

Quick links