Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer’s disease mouse model through downregulating BACE1 and Aβ generation

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson’s disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg−1·d−1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 μM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aβ generation by inhibiting the β-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aβ plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aβ generation in early AD, which is a potential therapeutic intervention for early AD treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sal B restored the function of the retina in 4-month-old 5×FAD mice.
Fig. 2: Learning and memory impairment were not detected in 4-month-old 5×FAD mice.
Fig. 3: No detectable LTP deficit in the Schaffer collateral (SC)-CA1 pathway was observed in 4-month-old 5×FAD mice hippocampus.
Fig. 4: Sal B restored the impairment of retinal structure in 4-month-old 5×FAD mice.
Fig. 5: Sal B reduced BACE1 expression and ameliorated Aβ deposition.
Fig. 6: Sal B mitigates Aβ deposition via BACE1 inhibition.
Fig. 7: Molecular dynamics models predict a stable binding of Sal B and BACE1.
Fig. 8: Sal B inhibited the sorting of BACE1 into the Golgi apparatus.
Fig. 9: Sal B inhibited microglial activation in 5×FAD mice.
Fig. 10: Sal B reduced retinal inflammation in 5×FAD mice.
Fig. 11: Sal B restored RGC deficits in 5×FAD mice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Shi H, Koronyo Y, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, et al. Retinal vasculopathy in Alzheimer’s disease. Front Neurosci. 2021;15:731614.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fernández-Albarral JA, Salobrar-García E, Martínez-Páramo R, Ramírez AI, de Hoz R, Ramírez JM, et al. Retinal glial changes in Alzheimer’s disease - A review. J Optom. 2019;12:198–207.

    Article  PubMed  Google Scholar 

  3. Madeira MH, Ambrósio AF, Santiago AR. Glia-mediated retinal neuroinflammation as a biomarker in Alzheimer’s disease. Ophthalmic Res. 2015;54:204–11.

    Article  CAS  PubMed  Google Scholar 

  4. Dehabadi MH, Davis BM, Wong TK, Cordeiro MF. Retinal manifestations of Alzheimer’s disease. Neurodegener Dis Manag. 2014;4:241–52.

    Article  PubMed  Google Scholar 

  5. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. NeuroImage. 2011;54:S204–17.

    Article  CAS  PubMed  Google Scholar 

  6. Georgevsky D, Retsas S, Raoufi N, Shimoni O, Golzan SM. A longitudinal assessment of retinal function and structure in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Transl Neurodegener. 2019;8:30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dolci GAM, Damanti S, Scortichini V, Galli A, Rossi PD, Abbate C, et al. Alzheimer’s disease diagnosis: discrepancy between clinical, neuroimaging, and cerebrospinal fluid biomarkers criteria in an Italian cohort of geriatric outpatients: A retrospective cross-sectional study. Front Med. 2017;4:203.

    Article  Google Scholar 

  8. Tan CC, Yu JT, Tan L. Biomarkers for preclinical Alzheimer’s disease. J Alzheimers Dis. 2014;42:1051–69.

    Article  CAS  PubMed  Google Scholar 

  9. Fiandaca MS, Mapstone ME, Cheema AK, Federoff HJ. The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimers Dement. 2014;10:S196–212.

    Article  PubMed  Google Scholar 

  10. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014;13:788–94.

    Article  PubMed  Google Scholar 

  11. Kim K, Kim MJ, Kim DW, Kim SY, Park S, Park CB. Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nat Commun. 2020;11:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salobrar-García E, de Hoz R, Ramírez AI, López-Cuenca I, Rojas P, Vazirani R, et al. Changes in visual function and retinal structure in the progression of Alzheimer’s disease. PLoS One. 2019;14:e0220535.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Danesh-Meyer HV, Birch H, Ku JY, Carroll S, Gamble G. Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology. 2006;67:1852–4.

    Article  CAS  PubMed  Google Scholar 

  14. Jack CR Jr., Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain. 2009;132:1355–65.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67.

    Article  CAS  PubMed  Google Scholar 

  16. Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 2012;11:1048–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao A, Fang F, Li B, Chen Y, Qiu Y, Wu Y, et al. Visual abnormalities associate with hippocampus in mild cognitive impairment and early Alzheimer’s disease. Front Aging Neurosci. 2020;12:597491.

    Article  CAS  PubMed  Google Scholar 

  18. La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, et al. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol. 2016;79:90–109.

    Article  PubMed  Google Scholar 

  19. Bevan RJ, Hughes TR, Williams PA, Good MA, Morgan BP, Morgan JE. Retinal ganglion cell degeneration correlates with hippocampal spine loss in experimental Alzheimer’s disease. Acta Neuropathol Commun. 2020;8:216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 2007;420:97–9.

    Article  CAS  PubMed  Google Scholar 

  21. Gao L, Liu Y, Li X, Bai Q, Liu P. Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer’s disease. Arch Gerontol Geriatr. 2015;60:162–7.

    Article  PubMed  Google Scholar 

  22. Zhang M, Zhong L, Han X, Xiong G, Xu D, Zhang S, et al. Brain and retinal abnormalities in the 5xFAD mouse model of Alzheimer’s disease at early stages. Front Neurosci. 2021;15:681831.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lim JKH, Li QX, He Z, Vingrys AJ, Chinnery HR, Mullen J, et al. Retinal functional and structural changes in the 5xFAD mouse model of Alzheimer’s disease. Front Neurosci. 2020;14:862.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dinet V, An N, Ciccotosto GD, Bruban J, Maoui A, Bellingham SA, et al. APP involvement in retinogenesis of mice. Acta Neuropathol. 2011;121:351–63.

    Article  CAS  PubMed  Google Scholar 

  25. Ning A, Cui J, To E, Ashe KH, Matsubara J. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci. 2008;49:5136–43.

    Article  PubMed  Google Scholar 

  26. Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S. Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Investigative Ophthalmol Vis Sci. 2009;50:793–800.

    Article  Google Scholar 

  27. Edwards MM, Rodríguez JJ, Gutierrez-Lanza R, Yates J, Verkhratsky A, Lutty GA. Retinal macroglia changes in a triple transgenic mouse model of Alzheimer’s disease. Exp Eye Res. 2014;127:252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, et al. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis. 2018;9:685.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, et al. Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol. 2009;175:2099–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Groef L, Cordeiro MF. Is the eye an extension of the brain in central nervous system disease? J Ocul Pharmacol Ther. 2018;34:129–33.

    Article  PubMed  Google Scholar 

  31. Cordeiro MF. Eyeing the brain. Acta Neuropathol. 2016;132:765–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53.

    Article  CAS  PubMed  Google Scholar 

  33. Song A, Johnson N, Ayala A, Thompson AC. Optical coherence tomography in patients with Alzheimer’s disease: what can it tell us? Eye Brain. 2021;13:1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kurna SA, Akar G, Altun A, Agirman Y, Gozke E, Sengor T. Confocal scanning laser tomography of the optic nerve head on the patients with Alzheimer’s disease compared to glaucoma and control. Int Ophthalmol. 2014;34:1203–11.

    Article  PubMed  Google Scholar 

  35. Chiquita S, Rodrigues-Neves AC, Baptista FI, Carecho R, Moreira PI, Castelo-Branco M, et al. The retina as a window or mirror of the brain changes detected in Alzheimer’s disease: Critical aspects to unravel. Mol Neurobiol. 2019;56:5416–35.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, et al. Retinal changes in Alzheimer’s disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res. 2021;82:100899.

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Baum L, Yu S, Lin Y, Xiong G, Chang RC, et al. Preservation of retinal function through synaptic stabilization in Alzheimer’s disease model mouse retina by Lycium Barbarum extracts. Front Aging Neurosci. 2021;13:788798.

    Article  CAS  PubMed  Google Scholar 

  38. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43:155–76.

    Article  CAS  PubMed  Google Scholar 

  39. Sun ZQ, Liu JF, Luo W, Wong CH, So KF, Hu Y, et al. Lycium barbarum extract promotes M2 polarization and reduces oligomeric amyloid-beta-induced inflammatory reactions in microglial cells. Neural Regen Res. 2022;17:203–9.

    Article  CAS  PubMed  Google Scholar 

  40. Li S, Wu Z, Le W. Traditional Chinese medicine for dementia. Alzheimers Dement. 2021;17:1066–71.

    Article  PubMed  Google Scholar 

  41. Lee YW, Kim DH, Jeon SJ, Park SJ, Kim JM, Jung JM, et al. Neuroprotective effects of salvianolic acid B on an Aβ25-35 peptide-induced mouse model of Alzheimer’s disease. Eur J Pharmacol. 2013;704:70–7.

    Article  CAS  PubMed  Google Scholar 

  42. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G. Alleviatory effects of Danshen, Salvianolic acid A and Salvianolic acid B on PC12 neuronal cells and Drosophila melanogaster model of Alzheimer’s disease. J Ethnopharmacol. 2021;279:114389.

    Article  CAS  PubMed  Google Scholar 

  43. Huang Q, Ye X, Wang L, Pan J. Salvianolic acid B abolished chronic mild stress-induced depression through suppressing oxidative stress and neuro-inflammation via regulating NLRP3 inflammasome activation. J Food Biochem. 2019;43:e12742.

    PubMed  Google Scholar 

  44. Liao D, Chen Y, Guo Y, Wang C, Liu N, Gong Q, et al. Salvianolic Acid B improves chronic mild stress-induced depressive behaviors in rats: Involvement of AMPK/SIRT1 Signaling Pathway. J Inflamm Res. 2020;13:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang JQ, Wu XH, Feng Y, Xie XF, Fan YH, Yan S, et al. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway. Acta Pharmacol Sin. 2016;37:1141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou J, Qu XD, Li ZY, Wei J, Liu Q, Ma YH, et al. Salvianolic acid B attenuates toxin-induced neuronal damage via Nrf2-dependent glial cells-mediated protective activity in Parkinson’s disease models. PLoS One. 2014;9:e101668.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao Y, Zhang Y, Zhang J, Yang G. Salvianolic acid B protects against MPP+-induced neuronal injury via repressing oxidative stress and restoring mitochondrial function. Neuroreport. 2021;32:815–23.

    Article  PubMed  Google Scholar 

  48. Zhang J, Xie X, Tang M, Zhang J, Zhang B, Zhao Q, et al. Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun. 2017;66:111–24.

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Wang Y, Guo J, Sun J, Sun Q. Salvianolic Acid B improves cognitive impairment by inhibiting neuroinflammation and decreasing Aβ level in Porphyromonas gingivalis-infected mice. Aging. 2020;12:10117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang P, Guo Y, Dang R, Yang M, Liao D, Li H, et al. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J Neuroinflamm. 2017;14:239.

    Article  Google Scholar 

  51. Durairajan SS, Yuan Q, Xie L, Chan WS, Kum WF, Koo I, et al. Salvianolic acid B inhibits Abeta fibril formation and disaggregates preformed fibrils and protects against Abeta-induced cytotoxicty. Neurochem. Int. 2008;52:741–50.

    Article  CAS  PubMed  Google Scholar 

  52. Lin YH, Liu AH, Wu HL, Westenbroek C, Song QL, Yu HM, et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents Abeta(25-35)-induced reduction in BPRP in PC12 cells. Biochem Biophys Res Commun. 2006;348:593–9.

    Article  CAS  PubMed  Google Scholar 

  53. Liu SM, Yang ZH, Sun XB. Simultaneous determination of six Salvia miltiorrhiza gradients in rat plasma and brain by LC-MS/MS. China J Chin Mater Med. 2014;39:1704–8.

    CAS  Google Scholar 

  54. Peng B, Xiao J, Wang K, So KF, Tipoe GL, Lin B. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J Neurosci. 2014;34:8139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zheng Q, Li G, Wang S, Zhou Y, Liu K, Gao Y, et al. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer’s brains is mediated by USP25. Sci Adv. 2021;7:eabe1340.

  56. Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, et al. VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol. 2011;195:765–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA. 2010;107:1211–6.

    Article  CAS  PubMed  Google Scholar 

  58. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun. 2019;10:1365.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zheng Q, Song B, Li G, Cai F, Wu M, Zhao Y, et al. USP25 inhibition ameliorates Alzheimer’s pathology through the regulation of APP processing and Aβ generation. J Clin Invest. 2022;132:e152170.

  60. Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13:612–23.

    Article  CAS  PubMed  Google Scholar 

  61. Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS. Recent progress in Alzheimer’s disease research, Part 3: diagnosis and treatment. J Alzheimers Dis. 2017;57:645–65.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hane FT, Lee BY, Leonenko Z. Recent progress in Alzheimer’s disease research, Part 1: Pathology. J Alzheimer’s Dis. 2017;57:1–28.

    Article  Google Scholar 

  63. Robinson M, Lee BY, Hane FT. Recent progress in Alzheimer’s disease research, Part 2: Genetics and Epidemiology. J Alzheimers Dis. 2017;57:317–30.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Prim. 2015;1:15056.

    Article  PubMed  Google Scholar 

  65. Mirzaei N, Shi H, Oviatt M, Doustar J, Rentsendorj A, Fuchs DT, et al. Alzheimer’s retinopathy: seeing disease in the eyes. Front Neurosci. 2020;14:921.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lim JK, Li QX, He Z, Vingrys AJ, Wong VH, Currier N, et al. The eye as a biomarker for Alzheimer’s disease. Front Neurosci. 2016;10:536.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Golzan SM, Goozee K, Georgevsky D, Avolio A, Chatterjee P, Shen K, et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimers Res Ther. 2017;9:13.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206:319–48.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hector A, Brouillette J. Hyperactivity induced by soluble Amyloid-β oligomers in the early stages of Alzheimer’s disease. Front Mol Neurosci. 2020;13:600084.

    Article  CAS  PubMed  Google Scholar 

  70. Pogue AI, Dua P, Hill JM, Lukiw WJ. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem. 2015;152:206–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. The functional diversity of retinal ganglion cells in the mouse. Nature. 2016;529:345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dow BM. Central mechanisms of vision: parallel processing. Fed Proc. 1976;35:54–9.

    CAS  PubMed  Google Scholar 

  73. Moss HE. Retinal vascular changes are a marker for cerebral vascular diseases. Curr Neurol Neurosci Rep. 2015;15:40.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. 2016;51:1–40.

    Article  CAS  PubMed  Google Scholar 

  75. Yu DY, Cringle SJ, Yu PK, Su EN, Sun X, Guo W, et al. Retinal cellular metabolism and its regulation and control. In: Maiese K, editor. Neurovascular Medicine: Pursuing Cellular Longevity for Healthy Aging. Oxford: Oxford University Press; 2009.

  76. Marquardt T, Gruss P. Generating neuronal diversity in the retina: One for nearly all. Trends Neurosci. 2002;25:32–8.

    Article  CAS  PubMed  Google Scholar 

  77. Seung HS, Sümbül U. Neuronal cell types and connectivity: Lessons from the retina. Neuron. 2014;83:1262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Masland RH. Neuronal diversity in the retina. Curr Opin Neurobiol. 2001;11:431–6.

    Article  CAS  PubMed  Google Scholar 

  79. Buccarello L, Sclip A, Sacchi M, Castaldo AM, Bertani I, ReCecconi A, et al. The c-jun N-terminal kinase plays a key role in ocular degenerative changes in a mouse model of Alzheimer disease suggesting a correlation between ocular and brain pathologies. Oncotarget. 2017;8:83038–51.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Criscuolo C, Cerri E, Fabiani C, Capsoni S, Cattaneo A, Domenici L. The retina as a window to early dysfunctions of Alzheimer’s disease following studies with a 5xFAD mouse model. Neurobiol Aging. 2018;67:181–8.

    Article  CAS  PubMed  Google Scholar 

  81. Chiquita S, Campos EJ, Castelhano J, Ribeiro M, Sereno J, Moreira PI, et al. Retinal thinning of inner sub-layers is associated with cortical atrophy in a mouse model of Alzheimer’s disease: a longitudinal multimodal in vivo study. Alzheimers Res Ther. 2019;11:90.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gupta VK, Chitranshi N, Gupta VB, Golzan M, Dheer Y, Wall RV, et al. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci Lett. 2016;623:52–6.

    Article  CAS  PubMed  Google Scholar 

  83. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tan J, Evin G. Β-site APP-cleaving enzyme 1 trafficking and Alzheimer’s disease pathogenesis. J Neurochem. 2012;120:869–80.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu Z, Ding L, Qiu WF, Wu HF, Li R. Salvianolic acid B protects the myelin sheath around injured spinal cord axons. Neural Regen Res. 2016;11:487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Silverman SM, Wong WT. Microglia in the retina: roles in development, maturity, and disease. Annu Rev Vis Sci. 2018;4:45–77.

    Article  PubMed  Google Scholar 

  87. Wang SX, Hu LM, Gao XM, Guo H, Fan GW. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem Res. 2010;35:1029–37.

    Article  CAS  PubMed  Google Scholar 

  88. Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB, et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol. 2008;40:409–22.

    Article  CAS  PubMed  Google Scholar 

  89. He Y, Jia K, Li L, Wang Q, Zhang S, Du J, et al. Salvianolic acid B attenuates mitochondrial stress against Aβ toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun. 2018;498:1066–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (82274301 and 81774377), the Natural Science Foundation of Fujian Province of China (Grant No. 2021J01019), the National Key Research and Development Program of China (2016YFC1305903) and the Program for New Century Excellent Talents in University of China (NCET-13-0505) (to LW).

Author information

Authors and Affiliations

Authors

Contributions

LW conceived the study and designed the experiments; MDW and SZ wrote the manuscript; LW, SYL, and SFL edited the manuscript; MDW and SZ performed most of the experiments; MDW, SZ, XYL, and PPW performed morphological analyses; YFZ, JRZ, CSL, SY, and SFL analyzed and contributed reagents/materials/analysis tools. XYL performed LTP analyses; LW supervised the project. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shi-ying Li, Sui-feng Liu or Lei Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Md., Zhang, S., Liu, Xy. et al. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer’s disease mouse model through downregulating BACE1 and Aβ generation. Acta Pharmacol Sin 44, 2151–2168 (2023). https://doi.org/10.1038/s41401-023-01125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01125-3

Keywords

Search

Quick links