Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of TMEM16A improves cisplatin-induced acute kidney injury via preventing DRP1-mediated mitochondrial fission

Abstract

Acute kidney injury (AKI) is associated with high morbidity and mortality. Our previous study has demonstrated that TMEM16A, a Ca2+-activated chloride channel, contributes to renal fibrosis progression in chronic kidney disease. However, whether TMEM16A isĀ involved in AKI is still unknown. In this study, we established cisplatin AKI mice model and found that TMEM16A expression was upregulated in the injured kidney. In vivo knockdown of TMEM16A effectively prevented cisplatin-induced tubular cell apoptosis, inflammation and kidney function loss. Western blot and transmission electron microscopy (TEM) revealed that TMEM16A knockdown inhibited Drp1 translocation from the cytoplasm to mitochondria and prevented mitochondrial fission in tubular cells. Consistently, in cultured HK2 cells, knockdown or inhibition of TMEM16A by shRNA or its specific inhibitor suppressed cisplatin-induced mitochondrial fission and its associated energy dysfunction, ROS accumulation, and cell apoptosis via inhibiting Drp1 activation. Further investigation showed that genetic knockdown or pharmacological inhibition of TMEM16A inhibited cisplatin-induced Drp1 Ser-616 site phosphorylation through ERK1/2 signaling pathway, whereas overexpression of TMEM16A promoted this effect. Treatment with Drp1 or ERK1/2 inhibitor could efficiently prevent cisplatin-induced mitochondrial fission. Collectively, our data suggest that TMEM16A inhibition alleviated cisplatin-induced AKI by preventing tubular cell mitochondrial fission through the ERK1/2 / Drp1 pathway. Inhibition of TMEM16A may be a novel therapeutic strategy for AKI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Knockdown of TMEM16A improved cisplatin-induced AKI.
Fig. 2: Knockdown of TMEM16A alleviated cisplatin-induced kidney injury and cell apoptosis in mouse kidneys.
Fig. 3: Knockdown or inhibition of TMEM16A prevented cisplatin-induced HK2 cell apoptosis.
Fig. 4: Knockdown or inhibition of TMEM16A prevented cisplatin-induced mitochondrial fission in vivo and in vitro.
Fig. 5: Knockdown of TMEM16A prevented cytochrome c release, mitochondrial dysfunction, and mitochondrial ROS accumulation.
Fig. 6: Knockdown or inhibition of TMEM16A prevented the translocation of Drp1 to mitochondria.
Fig. 7: TMEM16A promoted Drp1 phosphorylation via ERK1/2 signaling.

Similar content being viewed by others

References

  1. Jang HS, Noh MR, Jung EM, Kim WY, Southekal S, Guda C, et al. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury. Kidney Int. 2020;97:327ā€“39.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J, et al. Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics. 2020;10:5829ā€“44.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Hu Y, Yang C, Amorim T, Maqbool M, Lin J, Li C, et al. Cisplatin-mediated upregulation of APE2 binding to MYH9 provokes mitochondrial fragmentation and acute kidney injury. Cancer Res. 2021;81:713ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 2016;12:267ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14:291ā€“312.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Qin X, Zhao Y, Gong J, Huang W, Su H, Yuan F, et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics. 2019;9:1698ā€“713.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Yu X, Xu M, Meng X, Li S, Liu Q, Bai M, et al. Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI. Sci Transl Med. 2020;12:eaay7591.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest. 2009;119:1275ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, et al. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther. 2020;213:107594.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Morigi M, Perico L, Rota C, Longaretti L, Conti S, Rottoli D, et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest. 2015;125:715ā€“26.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1alpha pathway. J Pineal Res. 2018;65:e12491.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, et al. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol. 2019;234:7856ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Faria D, Rock JR, Romao AM, Schweda F, Bandulik S, Witzgall R, et al. The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney Int. 2014;85:1369ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Schreiber R, Buchholz B, Kraus A, Schley G, Scholz J, Ousingsawat J, et al. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A. J Am Soc Nephrol. 2019;30:228ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Buchholz B, Faria D, Schley G, Schreiber R, Eckardt KU, Kunzelmann K. Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. 2014;85:1058ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Li XL, Liu J, Chen XS, Cheng LM, Liu WL, Chen XF, et al. Blockade of TMEM16A protects against renal fibrosis by reducing intracellular Cl- concentration. Br J Pharmacol. 2022;179:3043ā€“60.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest. 2005;115:2894ā€“903.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Liu Z, Li H, Su J, Xu S, Zhu F, Ai J, et al. Numb depletion promotes Drp1-mediated mitochondrial fission and exacerbates mitochondrial fragmentation and dysfunction in acute kidney injury. Antioxid Redox Signal. 2019;30:1797ā€“816.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Yang B, Lan S, Dieude M, Sabo-Vatasescu JP, Karakeussian-Rimbaud A, Turgeon J, et al. Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury. J Am Soc Nephrol. 2018;29:1900ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Zheng H, Li X, Zeng X, Huang C, Ma M, Lv X, et al. TMEM16A inhibits angiotensin II-induced basilar artery smooth muscle cell migration in a WNK1-dependent manner. Acta Pharm Sin B. 2021;11:3994ā€“4007.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy. 2020;16:1506ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, et al. Cell-specific mechanisms of TMEM16A Ca2+-activated chloride channel in cancer. Mol Cancer. 2017;16:152.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Jin JY, Wei XX, Zhi XL, Wang XH, Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin. 2021;42:655ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322:590ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455:1210ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Godse NR, Khan N, Yochum ZA, Gomez-Casal R, Kemp C, Shiwarski DJ, et al. TMEM16A/ANO1 inhibits apoptosis via downregulation of Bim expression. Clin Cancer Res. 2017;23:7324ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Song Y, Gao J, Guan L, Chen X, Gao J, Wang K. Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF-alpha signaling. Cell Death Dis. 2018;9:703.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Narongkiatikhun P, Chattipakorn SC, Chattipakorn N. Mitochondrial dynamics and diabetic kidney disease: Missing pieces for the puzzle of therapeutic approaches. J Cell Mol Med. 2022;26:249ā€“73.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  29. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13:629ā€“46.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Wang J, Zhu P, Li R, Ren J, Zhou H. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 2020;30:101415.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Liu X, Xu C, Xu L, Li X, Sun H, Xue M, et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway. Metabolism. 2020;111:154334.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Huang Z, Li Q, Yuan Y, Zhang C, Wu L, Liu X, et al. Renalase attenuates mitochondrial fission in cisplatin-induced acute kidney injury via modulating sirtuin-3. Life Sci. 2019;222:78ā€“87.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Perry HM, Huang L, Wilson RJ, Bajwa A, Sesaki H, Yan Z, et al. Dynamin-related protein 1 deficiency promotes recovery from AKI. J Am Soc Nephrol. 2018;29:194ā€“206.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Mao RW, He SP, Lan JG, Zhu WZ. Honokiol ameliorates cisplatin-induced acute kidney injury via inhibition of mitochondrial fission. Br J Pharmacol. 2022;179:3886ā€“904.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Wang Y, Liu Q, Cai J, Wu P, Wang D, Shi Y, et al. Emodin prevents renal ischemia-reperfusion injury via suppression of CAMKII/DRP1-mediated mitochondrial fission. Eur J Pharmacol. 2022;916:174603.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res. 2012;72:3270ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 2013;110:E1026ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Bill A, Gutierrez A, Kulkarni S, Kemp C, Bonenfant D, Voshol H, et al. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget. 2015;6:9173ā€“88.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Kunzelmann K, Cabrita I, Wanitchakool P, Ousingsawat J, Sirianant L, Benedetto R, et al. Modulating Ca2+ signals: a common theme for TMEM16, Ist2, and TMC. Pflug Arch. 2016;468:475ā€“90.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 82173809, 81872858, 82200750), the Science and Technology Planning Project of Guangzhou, China (No. 202102080012), the Natural Science Foundation of Guangdong Province, China (No. 2022A1515012197, 2023A1515010468), and the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110222).

Author information

Authors and Affiliations

Authors

Contributions

XLL performed the animal experiments, and Western blots. XWL performed the immunofluorescence staining, cell culture and transfection. WLL and LMC carried out the tissue slides preparation. YQL, YSP and JL carried out the animal feeding. XLL and YHD conceived the study and drafted the manuscript.

Corresponding authors

Correspondence to Li-min Cheng or Yan-hua Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xl., Liu, Xw., Liu, Wl. et al. Inhibition of TMEM16A improves cisplatin-induced acute kidney injury via preventing DRP1-mediated mitochondrial fission. Acta Pharmacol Sin 44, 2230ā€“2242 (2023). https://doi.org/10.1038/s41401-023-01122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01122-6

Keywords

This article is cited by

Search

Quick links