Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

6-Methyl flavone inhibits Nogo-B expression and improves high fructose diet-induced liver injury in mice

Abstract

Excessive fructose consumption increases hepatic de novo lipogenesis, resulting in cellular stress, inflammation and liver injury. Nogo-B is a resident protein of the endoplasmic reticulum that regulates its structure and function. Hepatic Nogo-B is a key protein in glycolipid metabolism, and inhibition of Nogo-B has protective effects against metabolic syndrome, thus small molecules that inhibit Nogo-B have therapeutic benefits for glycolipid metabolism disorders. In this study we tested 14 flavones/isoflavones in hepatocytes using dual luciferase reporter system based on the Nogo-B transcriptional response system, and found that 6-methyl flavone (6-MF) exerted the strongest inhibition on Nogo-B expression in hepatocytes with an IC50 value of 15.85 μM. Administration of 6-MF (50 mg· kg−1 ·d−1, i.g. for 3 weeks) significantly improved insulin resistance along with ameliorated liver injury and hypertriglyceridemia in high fructose diet-fed mice. In HepG2 cells cultured in a media containing an FA-fructose mixture, 6-MF (15 μM) significantly inhibited lipid synthesis, oxidative stress and inflammatory responses. Furthermore, we revealed that 6-MF inhibited Nogo-B/ChREBP-mediated fatty acid synthesis and reduced lipid accumulation in hepatocytes by restoring cellular autophagy and promoting fatty acid oxidation via the AMPKα-mTOR pathway. Thus, 6-MF may serve as a potential Nogo-B inhibitor to treat metabolic syndrome caused by glycolipid metabolism dysregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 6-Methyl flavone (6-MF) inhibits the expression of Nogo-B.
Fig. 2: 6-MF ameliorates HFrD-induced metabolic disorders.
Fig. 3: 6-MF ameliorates HFrD-induced liver injury and hyperlipidemia.
Fig. 4: 6-MF decreased Nogo-B expression along with inhibiting lipid synthesis, oxidative stress, and inflammatory responses in the liver.
Fig. 5: 6-MF inhibits lipid synthesis, oxidative stress and inflammatory responses in HepG2 cells.
Fig. 6: 6-MF restores HFrD-inhibited β-oxidation and cellular autophagy.
Fig. 7: 6-MF activates HFrD-damaged autophagy via the AMPKα-mTOR pathway.

Similar content being viewed by others

References

  1. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79:537–43.

    Article  CAS  PubMed  Google Scholar 

  2. Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121:1356–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Johnson RJ, Sanchez-Lozada LG, Andrews P, Lanaspa MA. Perspective: a historical and scientific perspective of sugar and its relation with obesity and diabetes. Adv Nutr. 2017;8:412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128:545–55.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem. 2009;57:763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim MS, Krawczyk SA, Doridot L, Fowler AJ, Wang JX, Trauger SA, et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest. 2016;126:4372–86.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, et al. The role of fructose in non-alcoholic steatohepatitis: old relationship and new insights. Nutrients. 2021;13:1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oertle T, Huber C, van der Putten H, Schwab ME. Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4. J Mol Biol. 2003;325:299–323.

    Article  CAS  PubMed  Google Scholar 

  9. Di Lorenzo A, Manes TD, Davalos A, Wright PL, Sessa WC. Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation. Blood. 2011;117:2284–95.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang D, Utsumi T, Huang HC, Gao L, Sangwung P, Chung C, et al. Reticulon 4B (Nogo-B) is a novel regulator of hepatic fibrosis. Hepatology. 2011;53:1306–15.

    Article  CAS  PubMed  Google Scholar 

  11. Gao L, Utsumi T, Tashiro K, Liu B, Zhang D, Swenson ES, et al. Reticulon 4B (Nogo-B) facilitates hepatocyte proliferation and liver regeneration in mice. Hepatology. 2013;57:1992–2003.

    Article  CAS  PubMed  Google Scholar 

  12. Park JK, Shao M, Kim MY, Baik SK, Cho MY, Utsumi T, et al. An endoplasmic reticulum protein, Nogo-B, facilitates alcoholic liver disease through regulation of kupffer cell polarization. Hepatology. 2017;65:1720–34.

    Article  CAS  PubMed  Google Scholar 

  13. Tian Y, Yang B, Qiu W, Hao Y, Zhang Z, Yang B, et al. ER-residential Nogo-B accelerates NAFLD-associated HCC mediated by metabolic reprogramming of oxLDL lipophagy. Nat Commun. 2019;10:3391.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, Yu M, Guo F, Yang X, Chen Y, Ma C, et al. Rosiglitazone alleviates intrahepatic cholestasis induced by alpha-naphthylisothiocyanate in mice: the role of circulating 15-deoxy-Delta(12,14) -PGJ2 and Nogo. Br J Pharmacol. 2020;177:1041–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang S, Guo F, Yu M, Yang X, Yao Z, Li Q, et al. Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity. J Hepatol. 2020;73:1482–95.

    Article  CAS  PubMed  Google Scholar 

  16. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–57.

    Article  PubMed  Google Scholar 

  17. Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, et al. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients. 2017;9:96.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8:423–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swapna Sasi US, Sindhu G, Raghu KG. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: an in vitro approach. Toxicol Vitr. 2020;68:104952.

    Article  CAS  Google Scholar 

  20. Zhao L, Guo X, Wang O, Zhang H, Wang Y, Zhou F, et al. Fructose and glucose combined with free fatty acids induce metabolic disorders in HepG2 cell: a new model to study the impacts of high-fructose/sucrose and high-fat diets in vitro. Mol Nutr Food Res. 2016;60:909–21.

    Article  CAS  PubMed  Google Scholar 

  21. Maher P, Salgado KF, Zivin JA, Lapchak PA. A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res. 2007;1173:117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gutierrez-Venegas G, Bando-Campos CG. The flavonoids luteolin and quercetagetin inhibit lipoteichoic acid actions on H9c2 cardiomyocytes. Int Immunopharmacol. 2010;10:1003–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yu M, Zhang S, Guo F, Yang X, Li Q, Wei Z, et al. Identification of Nogo-B as a new molecular target of peroxisome proliferator-activated receptor gamma. Cell Signal. 2020;65:109429.

    Article  CAS  PubMed  Google Scholar 

  24. Clarkson AN, Boothman-Burrell L, Dosa Z, Nagaraja RY, Jin L, Parker K, et al. The flavonoid, 2’-methoxy-6-methylflavone, affords neuroprotection following focal cerebral ischaemia. J Cereb Blood Flow Metab. 2019;39:1266–82.

    Article  CAS  PubMed  Google Scholar 

  25. Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther. 2006;5:843–52.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, et al. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2015;35:948–59.

    Article  CAS  PubMed  Google Scholar 

  27. Duan Y, Chen Y, Hu W, Li X, Yang X, Zhou X, et al. Peroxisome proliferator-activated receptor gamma activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. J Biol Chem. 2012;287:23667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wen H, Zhong Y, Yin Y, Qin K, Yang L, Li D, et al. A marine-derived small molecule induces immunogenic cell death against triple-negative breast cancer through ER stress-CHOP pathway. Int J Biol Sci. 2022;18:2898–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Wei Z, Ma X, Yang X, Chen Y, Sun L, et al. 25-Hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism. J Lipid Res. 2018;59:439–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, et al. Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation. Cell Res. 2017;27:1100–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jegatheesan P, De Bandt JP. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017;9:230.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jegatheesan P, Beutheu S, Ventura G, Nubret E, Sarfati G, Bergheim I, et al. Citrulline and nonessential amino acids prevent fructose-induced nonalcoholic fatty liver disease in rats. J Nutr. 2015;145:2273–9.

    Article  CAS  PubMed  Google Scholar 

  33. Zambo V, Simon-Szabo L, Szelenyi P, Kereszturi E, Banhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol. 2013;5:550–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang D, Tong X, VanDommelen K, Gupta N, Stamper K, Brady GF, et al. Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity. J Clin Invest. 2017;127:2855–67.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65:1049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Byrnes K, Blessinger S, Bailey NT, Scaife R, Liu G, Khambu B. Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B. 2022;12:33–49.

    Article  CAS  PubMed  Google Scholar 

  37. Cursio R, Colosetti P, Codogno P, Cuervo AM, Shen HM. The role of autophagy in liver diseases: mechanisms and potential therapeutic targets. Biomed Res Int. 2015;2015:480508.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rada P, Gonzalez-Rodriguez A, Garcia-Monzon C, Valverde AM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 2020;11:802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao Y, Fan X, Gu W, Ci X, Peng L. Hyperoside relieves particulate matter-induced lung injury by inhibiting AMPK/mTOR-mediated autophagy deregulation. Pharmacol Res. 2021;167:105561.

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Yang Y, Zhao D, Zhang S, Chen Y, Chen Y, et al. Inhibition of high-fat diet-induced obesity via reduction of ER-resident protein Nogo occurs through multiple mechanisms. J Biol Chem. 2022;298:101561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao Y, Xie L, Liu K, Liang Y, Dai X, Wang X, et al. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: a review. Pharmacol Res. 2021;174:105919.

    Article  CAS  PubMed  Google Scholar 

  43. Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest. 2012;122:2176–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gambino R, Bugianesi E, Rosso C, Mezzabotta L, Pinach S, Alemanno N, et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. Int J Mol Sci. 2016;17:479.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amorim R, Simoes ICM, Teixeira J, Cagide F, Potes Y, Soares P, et al. Mitochondria-targeted anti-oxidant AntiOxCIN4 improved liver steatosis in Western diet-fed mice by preventing lipid accumulation due to upregulation of fatty acid oxidation, quality control mechanism and antioxidant defense systems. Redox Biol. 2022;55:102400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou J, Tripathi M, Ho JP, Widjaja AA, Shekeran SG, Camat MD, et al. Thyroid hormone decreases hepatic steatosis, inflammation, and fibrosis in a dietary mouse model of nonalcoholic steatohepatitis. Thyroid. 2022;32:725–38.

    Article  CAS  PubMed  Google Scholar 

  48. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125:25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Egan D, Kim J, Shaw RJ, Guan KL. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011;7:643–4.

    Article  PubMed  Google Scholar 

  50. Sun D, Tao W, Zhang F, Shen W, Tan J, Li L, et al. Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling. Signal Transduct Target Ther. 2020;5:174.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, et al. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy. 2019;15:169–71.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Li C, Li X, Wu C, Zhou H, Lu S, et al. Trimetazidine improves hepatic lipogenesis and steatosis in non‑alcoholic fatty liver disease via AMPK‑ChREBP pathway. Mol Med Rep. 2020;22:2174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balamurugan K, Medishetti R, Kotha J, Behera P, Chandra K, Mavuduru VA, et al. PHLPP1 promotes neutral lipid accumulation through AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis pathways. iScience. 2022;25:103766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han Y, Hu Z, Cui A, Liu Z, Ma F, Xue Y, et al. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat Commun. 2019;10:623.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support was provided by China NSFC grants U22A20272 and 82173807 to YJD, 81973316 to JHH; Tianjin Municipal Science and Technology Commission of China Grant 20JCZDJC00710 and the Fundamental Research Funds for the Central Universities (Nankai University) 63211045 to JHH.

Author information

Authors and Affiliations

Authors

Contributions

KG, ZZ, QSL, JHH, and YJD designed the study, drafted and edited the manuscript; KG and ZZ performed most of the experiments; SSC, XRZ, MYW, XYY, and CD assisted with the experimental operation or data collection.

Corresponding authors

Correspondence to Qing-shan Li or Ya-jun Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, K., Zhang, Z., Chen, Ss. et al. 6-Methyl flavone inhibits Nogo-B expression and improves high fructose diet-induced liver injury in mice. Acta Pharmacol Sin 44, 2216–2229 (2023). https://doi.org/10.1038/s41401-023-01121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01121-7

Keywords

Search

Quick links