Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bispecific antibody targeting both B7-H3 and PD-L1 exhibits superior antitumor activities

Abstract

Clinical application of PD-1 and PD-L1 monoclonal antibodies (mAbs) is hindered by their relatively low response rates and the occurrence of drug resistance. Co-expression of B7-H3 with PD-L1 has been found in various solid tumors, and combination therapies that target both PD-1/PD-L1 and B7-H3 pathways may provide  additional therapeutic benefits. Up to today, however, no bispecific antibodies targeting both PD-1 and B7-H3 have reached the clinical development stage. In this study, we generated a stable B7-H3×PD-L1 bispecific antibody (BsAb) in IgG1-VHH format by coupling a humanized IgG1 mAb against PD-L1 with a humanized camelus variable domain of the heavy-chain of heavy-chain antibody (VHH) against human B7-H3. The BsAb exhibited favorable thermostability, efficient T cell activation, IFN-γ production, and antibody-dependent cell-mediated cytotoxicity (ADCC). In a PBMC humanized A375 xenogeneic tumor model, treatment with BsAb (10 mg/kg, i.p., twice a week for 6 weeks) showed enhanced antitumor activities compared to monotherapies and, to some degree, combination therapies. Our results suggest that targeting both PD-1 and B7-H3 with BsAbs increases their specificities to B7-H3 and PD-L1 double-positive tumors and induces a synergetic effect. We conclude that B7-H3×PD-L1 BsAb is favored over mAbs and possibly combination therapies in treating B7-H3 and PD-L1 double-positive tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The schematic structure and thermostability analysis of B7-H3×PD-L1 BsAb constructed in IgG1-VHH format.
Fig. 2: The binding activities of B7-H3×PD-L1 BsAb to PD-L1 and B7-H3 fusion proteins.
Fig. 3: Neutralization of PD-1 and PD-L1 interaction by B7-H3×PD-L1 BsAb.
Fig. 4: B7-H3×PD-L1 BsAb showed enhanced abilities to promote T cell proliferation and induce ADCC against tumor cells by human PBMCs.
Fig. 5: B7-H3×PD-L1 BsAb exhibited antitumor activities superior to monotherapies or combination therapies.
Fig. 6: B7-H3×PD-L1 BsAb had a favorable safety profile.

Similar content being viewed by others

References

  1. Inman BA, Sebo TJ, Frigola X, Dong H, Bergstralh EJ, Frank I, et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer. 2007;109:1499–505.

    Article  CAS  PubMed  Google Scholar 

  2. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA. 2004;101:17174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73:128–38.

    Article  CAS  PubMed  Google Scholar 

  4. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27:1492–504.

    Article  CAS  PubMed  Google Scholar 

  5. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mu S, Liang Z, Wang Y, Chu W, Chen YL, Wang Q, et al. PD-L1/TIGIT bispecific antibody showed survival advantage in animal model. Clin Transl Med. 2022;12:e754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Makuku R, Khalili N, Razi S, Keshavarz-Fathi M, Rezaei N. Current and future perspectives of PD-1/PDL-1 blockade in cancer immunotherapy. J Immunol Res. 2021;2021:6661406.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. T GS. Innate and adaptive immune cells in tumor microenvironment. Gulf J Oncol. 2021;1:77–81.

    Google Scholar 

  10. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001;2:269–74.

    Article  CAS  PubMed  Google Scholar 

  11. Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol. 2003;4:899–906.

    Article  CAS  PubMed  Google Scholar 

  12. Steinberger P, Majdic O, Derdak SV, Pfistershammer K, Kirchberger S, Klauser C, et al. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J Immunol. 2004;172:2352–9.

    Article  CAS  PubMed  Google Scholar 

  13. Saatian B, Yu XY, Lane AP, Doyle T, Casolaro V, Spannhake EW. Expression of genes for B7-H3 and other T cell ligands by nasal epithelial cells during differentiation and activation. Am J Physiol Lung Cell Mol Physiol. 2004;287:L217–25.

    Article  CAS  PubMed  Google Scholar 

  14. Suh WK, Wang SX, Jheon AH, Moreno L, Yoshinaga SK, Ganss B, et al. The immune regulatory protein B7-H3 promotes osteoblast differentiation and bone mineralization. Proc Natl Acad Sci USA. 2004;101:12969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castriconi R, Dondero A, Augugliaro R, Cantoni C, Carnemolla B, Sementa AR, et al. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc Natl Acad Sci USA. 2004;101:12640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai D, Li J, Liu D, Hong S, Qiao Q, Sun Q, et al. Tumor-expressed B7-H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy. Cell Mol Immunol. 2020;17:227–36.

    Article  CAS  PubMed  Google Scholar 

  17. Li G, Quan Y, Che F, Wang L. B7-H3 in tumors: friend or foe for tumor immunity? Cancer Chemother Pharmacol. 2018;81:245–53.

    Article  CAS  PubMed  Google Scholar 

  18. Flem-Karlsen K, Fodstad Ø, Tan M, Nunes-Xavier CE. B7-H3 in cancer - beyond immune regulation. Trends Cancer. 2018;4:401–4.

    Article  CAS  PubMed  Google Scholar 

  19. Lee YH, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017;27:1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang L, Kang FB, Shan BE. B7-H3-mediated tumor immunology: friend or foe? Int J Cancer. 2014;134:2764–71.

    Article  CAS  PubMed  Google Scholar 

  21. Varki V, Ioffe OB, Bentzen SM, Heath J, Cellini A, Feliciano J, et al. PD-L1, B7-H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma. Cancer Immunol Immunother. 2018;67:805–14.

    Article  CAS  PubMed  Google Scholar 

  22. Carvajal-Hausdorf D, Altan M, Velcheti V, Gettinger SN, Herbst RS, Rimm DL, et al. Expression and clinical significance of PD-L1, B7-H3, B7-H4 and TILs in human small cell lung Cancer (SCLC). J Immunother Cancer. 2019;7:65.

    Article  PubMed  PubMed Central  Google Scholar 

  23. MacGregor HL, Sayad A, Elia A, Wang BX, Katz SR, Shaw PA, et al. High expression of B7-H3 on stromal cells defines tumor and stromal compartments in epithelial ovarian cancer and is associated with limited immune activation. J Immunother Cancer. 2019;7:357.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Shen Y, Qu QX, Chen XQ, Zhang XG, Huang JA. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp Cell Res. 2013;319:96–102.

    Article  CAS  PubMed  Google Scholar 

  25. Sun J, Chen LJ, Zhang GB, Jiang JT, Zhu M, Tan Y, et al. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol Immunother. 2010;59:1163–71.

    Article  CAS  PubMed  Google Scholar 

  26. Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin Cancer Res. 2016;22:3425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loo D, Alderson RF, Chen FZ, Huang L, Zhang W, Gorlatov S, et al. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin Cancer Res. 2012;18:3834–45.

    Article  CAS  PubMed  Google Scholar 

  28. Shenderov E, Demarzo A, Boudadi K, Allaf M, Wang H, Chapman C, et al. Phase II neoadjuvant and immunologic study of B7-H3 targeting with enoblituzumab in localized intermediate- and high-risk prostate cancer. J Clin Oncol. 2018;36:TPS509.

    Article  Google Scholar 

  29. Dhimolea E, Reichert JM. World bispecific antibody summit, September 27-28, 2011, Boston, MA. MAbs. 2012;4:4–13.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Yang Y, Fan D, Xiong D. The development of bispecific antibodies and their applications in tumor immune escape. Exp Hematol Oncol. 2017;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mahmoud AM, Frank I, Orme JJ, Lavoie RR, Thapa P, Costello BA, et al. Evaluation of PD-L1 and B7-H3 expression as a predictor of response to adjuvant chemotherapy in bladder cancer. BMC Urol. 2022;22:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsumura E, Kajino K, Abe M, Ohtsuji N, Saeki H, Hlaing MT, et al. Expression status of PD-L1 and B7-H3 in mesothelioma. Pathol Int. 2020;70:999–1008.

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Tian Z, Gao H, Xiong F, Cao C, Yu J, et al. Clinical significance and correlation of PD-L1, B7-H3, B7-H4, and TILs in pancreatic cancer. BMC Cancer. 2022;22:584.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Molberg K, Carrick K, Niu S, Rivera Colon G, Gwin K, et al. Prevalence and prognostic significance of PD-L1, TIM-3 and B7-H3 expression in endometrial serous carcinoma. Mod Pathol. 2022;35:1955–65.

    Article  CAS  PubMed  Google Scholar 

  35. Scilla KA, Zandberg DP, Bentzen SM, Mainor C, Heath J, Ioffe OB, et al. Case-control study of PD-1, PD-L1 and B7-H3 expression in lung cancer patients with and without human immunodeficiency virus (HIV) infection. Lung Cancer. 2018;123:87–90.

    Article  PubMed  Google Scholar 

  36. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103–19.

    Article  CAS  PubMed  Google Scholar 

  37. Chen YL, Cui Y, Liu X, Liu G, Dong X, Tang L, et al. A bispecific antibody targeting HER2 and PD-L1 inhibits tumor growth with superior efficacy. J Biol Chem. 2021;297:101420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu W, Xu H, Wang Y, Xie Y, Chen YL, Tan X, et al. HER2/PD1 bispecific antibody in IgG4 subclass with superior anti-tumour activities. Clin Transl Med. 2022;12:e791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao M, Wang C, Chung WK, Motabar D, Wang J, Christian E, et al. Characterization and analysis of scFv-IgG bispecific antibody size variants. MAbs. 2018;10:1236–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schanzer J, Jekle A, Nezu J, Lochner A, Croasdale R, Dioszegi M, et al. Development of tetravalent, bispecific CCR5 antibodies with antiviral activity against CCR5 monoclonal antibody-resistant HIV-1 strains. Antimicrob Agents Chemother. 2011;55:2369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuramochi T, Igawa T, Tsunoda H, Hattori K. Humanization and simultaneous optimization of monoclonal antibody. Methods Mol Biol. 2019;1904:213–30.

    Article  CAS  PubMed  Google Scholar 

  42. Abhinandan KR, Martin AC. Analyzing the “degree of humanness” of antibody sequences. J Mol Biol. 2007;369:852–62.

    Article  CAS  PubMed  Google Scholar 

  43. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 2009;284:3273–84.

    Article  CAS  PubMed  Google Scholar 

  44. Gu J, Xu J, Lei C, D’Souza P, Moscoso-Castro M, Wang Z, et al. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther. 2020;3:18–62.

    PubMed  PubMed Central  Google Scholar 

  45. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9:182–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou J, Zhuang M, Yu X, Li N, Mao R, Wang Z, et al. MYC inhibition increases PD-L1 expression induced by IFN-γ in hepatocellular carcinoma cells. Mol Immunol. 2018;101:203–9.

    Article  CAS  PubMed  Google Scholar 

  47. Chaganty BKR, Qiu S, Gest A, Lu Y, Ivan C, Calin GA, et al. Trastuzumab upregulates PD-L1 as a potential mechanism of trastuzumab resistance through engagement of immune effector cells and stimulation of IFNγ secretion. Cancer Lett. 2018;430:47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qian J, Wang C, Wang B, Yang J, Wang Y, Luo F, et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflammation. 2018;15:290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Flem-Karlsen K, Fodstad Ø, Nunes-Xavier CE. B7-H3 immune checkpoint protein in human cancer. Curr Med Chem. 2020;27:4062–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81872785), Shanghai Municipal Commission of Science and Technology of China (21S11904500), Major Scientific and Technological Special Project of Zhongshan City (191022172638719 and 210205143867019), CAS Bohai Rim Advanced Research Institute for Drug Discovery Project (LX211005), and the Research & Development Plan in Key Areas of Guangdong Province (2022B1111070007).

Author information

Authors and Affiliations

Authors

Contributions

CHW and YLC conceived the study and designed the experiments. HYL, XND, JT, YJZ, GJL, HHL, KTP, MP, LLY, XJC, YL, and YSZ conducted the experiments and analyzed the data. HYL and CHW drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yi-li Chen or Chun-he Wang.

Ethics declarations

Competing interests

YLC, HYL, JT, HHL and MP are employed by Mabstone Biotechnologies, Ltd.; CHW and GJL are employed by Dartsbio Pharmaceuticals, Ltd. The remaining authors declare no conflicts of interest.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hy., Chen, Yl., Deng, Xn. et al. Bispecific antibody targeting both B7-H3 and PD-L1 exhibits superior antitumor activities. Acta Pharmacol Sin 44, 2322–2330 (2023). https://doi.org/10.1038/s41401-023-01118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01118-2

Keywords

Search

Quick links