Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capsaicin functions as a selective degrader of STAT3 to enhance host resistance to viral infection

Abstract

Although STAT3 has been reported as a negative regulator of type I interferon (IFN) signaling, the effects of pharmacologically inhibiting STAT3 on innate antiviral immunity are not well known. Capsaicin, approved for the treatment of postherpetic neuralgia and diabetic peripheral nerve pain, is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), with additional recognized potencies in anticancer, anti-inflammatory, and metabolic diseases. We investigated the effects of capsaicin on viral replication and innate antiviral immune response and discovered that capsaicin dose-dependently inhibited the replication of VSV, EMCV, and H1N1. In VSV-infected mice, pretreatment with capsaicin improved the survival rate and suppressed inflammatory responses accompanied by attenuated VSV replication in the liver, lung, and spleen. The inhibition of viral replication by capsaicin was independent of TRPV1 and occurred mainly at postviral entry steps. We further revealed that capsaicin directly bound to STAT3 protein and selectively promoted its lysosomal degradation. As a result, the negative regulation of STAT3 on the type I IFN response was attenuated, and host resistance to viral infection was enhanced. Our results suggest that capsaicin is a promising small-molecule drug candidate, and offer a feasible pharmacological strategy for strengthening host resistance to viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capsaicin restricts viral replication in vitro.
Fig. 2: Capsaicin inhibits virus infection in vivo.
Fig. 3: Capsaicin restricts viral replication after viral entry in a TRPV1-independent manner.
Fig. 4: Capsaicin enhances the antiviral immune response.
Fig. 5: STAT3 negatively regulates the antiviral immune response.
Fig. 6: Capsaicin restricts viral replication by inhibiting STAT3.
Fig. 7: Capsaicin inhibits STAT3 via the autophagy-lysosome pathway.
Fig. 8: Mechanism of capsaicin regulating antiviral immunity pathway.

Similar content being viewed by others

References

  1. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2013;14:36–49.

    Article  Google Scholar 

  2. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4.

    Article  CAS  PubMed  Google Scholar 

  3. Liu G, Gack MU. Distinct and orchestrated functions of RNA sensors in innate immunity. Immunity. 2020;53:26–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol. 2011;11:187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005;122:669–82.

    Article  CAS  PubMed  Google Scholar 

  6. Darnell JE Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.

    Article  CAS  PubMed  Google Scholar 

  7. Fang M, Zhang A, Du Y, Lu W, Wang J, Minze LJ, et al. TRIM18 is a critical regulator of viral myocarditis and organ inflammation. J Biomed Sci. 2022;29:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18:374–84.

    Article  CAS  PubMed  Google Scholar 

  9. Wang WB, Levy DE, Lee CK. STAT3 negatively regulates type I IFN-mediated antiviral response. J Immunol. 2011;187:2578–85.

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Yuan M, Wang S, Zhang L, Zhang R, Zou X, et al. STAT3 regulates the Type I IFN-mediated antiviral response by interfering with the nuclear entry of STAT1. Int J Mol Sci. 2019;20:4870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao K, Zhang Q, Li X, Zhao D, Liu Y, Shen Q, et al. Cytoplasmic STAT4 promotes antiviral type I IFN production by blocking CHIP-mediated degradation of RIG-I. J Immunol. 2016;196:1209–17.

    Article  CAS  PubMed  Google Scholar 

  12. Zimmerman MG, Bowen JR, McDonald CE, Young E, Baric RS, Pulendran B, et al. STAT5: a target of antagonism by neurotropic flaviviruses. J Virol. 2019;93:e00665–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Sun H, You F, Sun W, Zhou X, Chen L, et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell. 2011;147:436–46.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Q, Gao C, Wang M, Fei X, Zhao N. TRIM18-regulated STAT3 signaling pathway via PTP1B promotes renal epithelial-mesenchymal transition, inflammation, and fibrosis in diabetic kidney disease. Front Physiol. 2021;12:709506.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu H, Xu SJ, Xie SJ, Zhang Y, Yang JH, Zhang WQ, et al. MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. eLife. 2019;8:e41159.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  17. Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170:51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corson TW, Crews CM. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007;130:769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glinski W, Glinska-Ferenz M, Pierozynska-Dubowska M. Neurogenic inflammation induced by capsaicin in patients with psoriasis. Acta Derm Venereol. 1991;71:51–4.

    Article  CAS  PubMed  Google Scholar 

  20. Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173:2369–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Panchal SK, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients. 2018;10:630.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Srinivasan K. Anti-cholelithogenic potential of dietary spices and their bioactives. Crit Rev Food Sci Nutr. 2017;57:1749–58.

    Article  CAS  PubMed  Google Scholar 

  23. Qiao Y, Hu T, Yang B, Li H, Chen T, Yin D, et al. Capsaicin alleviates the deteriorative mitochondrial function by upregulating 14-3-3η in anoxic or anoxic/reoxygenated cardiomyocytes. Oxid Med Cell Longev. 2020;2020:1750289.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mahalak KK, Bobokalonov J, Firrman J, Williams R, Evans B, Fanelli B, et al. Analysis of the ability of capsaicin to modulate the human gut microbiota in vitro. Nutrients. 2022;14:1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jia X, Yuan S, Wang Y, Fu Y, Ge Y, Ge Y, et al. The role of alternative polyadenylation in the antiviral innate immune response. Nat Commun. 2017;8:14605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Yuan S, Jia X, Ge Y, Ling T, Nie M, et al. Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate antiviral responses through MAVS. Nat Cell Biol. 2019;21:1346–56.

    Article  CAS  PubMed  Google Scholar 

  27. Tang K, Zhang X, Guo Y. Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry. Acta Pharm Sin B. 2020;10:789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho HH, Ivashkiv LB. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem. 2006;281:14111–8.

    Article  CAS  PubMed  Google Scholar 

  30. Velichko S, Wagner TC, Turkson J, Jove R, Croze E. STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. Activation of multiple STATS proceeds through the redundant usage of two tyrosine residues. J Biol Chem. 2002;277:35635–41.

    Article  CAS  PubMed  Google Scholar 

  31. Tsai MH, Lee CK. STAT3 cooperates with phospholipid scramblase 2 to suppress type I interferon response. Front Immunol. 2018;9:1886.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bhutani M, Pathak AK, Nair AS, Kunnumakkara AB, Guha S, Sethi G, et al. Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res. 2007;13:3024–32.

    Article  CAS  PubMed  Google Scholar 

  33. Lee YH, Im SA, Kim JW, Lee CK. Vanilloid receptor 1 agonists, capsaicin and resiniferatoxin, enhance MHC class I-restricted viral antigen presentation in virus-infected dendritic cells. Immune Netw. 2016;16:233–41.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alrasheid AA, Babiker MY, Awad TA. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacol. 2021;9:10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR, Wu J, et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell. 2019;178:919–32.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanjai Kumar P, Nayak TK, Mahish C, Sahoo SS, Radhakrishnan A, De S, et al. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Arch Virol. 2021;166:139–55.

    Article  CAS  PubMed  Google Scholar 

  37. Weber M, Sediri H, Felgenhauer U, Binzen I, Bänfer S, Jacob R, et al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe. 2015;17:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang S, Dai T, Qin Z, Pan T, Chu F, Lou L, et al. Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat Cell Biol. 2021;23:718–32.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu H, Zheng C. The race between host antiviral innate immunity and the immune evasion strategies of herpes simplex virus 1. Microbiol Mol Biol Rev. 2020;84:e00099–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y, Yen B, et al. Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe. 2013;14:74–84.

    Article  CAS  PubMed  Google Scholar 

  41. Lu T, Bankhead A 3rd, Ljungman M, Neamati N. Multi-omics profiling reveals key signaling pathways in ovarian cancer controlled by STAT3. Theranostics. 2019;9:5478–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roca Suarez AA, Van Renne N, Baumert TF, Lupberger J. Viral manipulation of STAT3: evade, exploit, and injure. PLoS Pathog. 2018;14:e1006839.

    Article  PubMed  PubMed Central  Google Scholar 

  43. McCartney EM, Helbig KJ, Narayana SK, Eyre NS, Aloia AL, Beard MR. Signal transducer and activator of transcription 3 is a proviral host factor for hepatitis C virus. Hepatology. 2013;58:1558–68.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida T, Hanada T, Tokuhisa T, Kosai K, Sata M, Kohara M, et al. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation. J Exp Med. 2002;196:641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 2010;53:57–66.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan K, Lei Y, Chen HN, Chen Y, Zhang T, Li K, et al. HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3. Cell Death Differ. 2016;23:616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2023-JYB-KYPT-06), Young Elite Scientists Sponsorship Program by China Association for Science and Technology (No. 2020-QNRC1-03), the National Natural Science Foundation (NNSF) of China (Nos. 82001663).

Author information

Authors and Affiliations

Authors

Contributions

ALX and YW conceived the study. YW and XJ designed the research, instructed experiments, and helped to revise the manuscript. MQZ performed most of the experiments, analyzed results and wrote the manuscript. CQC and YXW contributed to bioinformatic analysis. QQL, YLY, and YTH instructed article figure drawing. ZHJ, LDK, YYL, QTD, and FX assisted in the design and performance of animal experiment. ALX provided funding for the project, and supervised the project and revised and finally approved the manuscript.

Corresponding authors

Correspondence to Yao Wang or An-long Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Mq., Jia, X., Cheng, Cq. et al. Capsaicin functions as a selective degrader of STAT3 to enhance host resistance to viral infection. Acta Pharmacol Sin 44, 2253–2264 (2023). https://doi.org/10.1038/s41401-023-01111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01111-9

Keywords

Search

Quick links