Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATF4 renders human T-cell acute lymphoblastic leukemia cell resistance to FGFR1 inhibitors through amino acid metabolic reprogramming

Abstract

Abnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients. Knockdown of FGFR1 suppressed T-ALL growth and progression both in vitro and in vivo. However, the T-ALL cells were resistant to FGFR1 inhibitors AZD4547 and PD-166866 even though FGFR1 signaling was specifically inhibited in the early stage. Mechanistically, we found that FGFR1 inhibitors markedly increased the expression of ATF4, which was a major initiator for T-ALL resistance to FGFR1 inhibitors. We further revealed that FGFR1 inhibitors induced expression of ATF4 through enhancing chromatin accessibility combined with translational activation via the GCN2-eIF2α pathway. Subsequently, ATF4 remodeled the amino acid metabolism by stimulating the expression of multiple metabolic genes ASNS, ASS1, PHGDH and SLC1A5, maintaining the activation of mTORC1, which contributed to the drug resistance in T-ALL cells. Targeting FGFR1 and mTOR exhibited synergistically anti-leukemic efficacy. These results reveal that FGFR1 is a potential therapeutic target in human T-ALL, and ATF4-mediated amino acid metabolic reprogramming contributes to the FGFR1 inhibitor resistance. Synergistically inhibiting FGFR1 and mTOR can overcome this obstacle in T-ALL therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FGFR1 is upregulated in T-ALL and negatively correlated with the prognosis of patients.
Fig. 2: FGFR1 is a potential therapeutic target in T-ALL but leukemia cells are resistant to FGFR1 inhibitors.
Fig. 3: ATF4 is essential for the resistance of T-ALL against FGFR1 inhibitors.
Fig. 4: Expression of ATF4 is stimulated by increased chromatin accessibility combined with GCN2-mediated translational activation.
Fig. 5: ATF4 is a crucial initiator to upregulate the metabolic genes and remodel the amino acid metabolism.
Fig. 6: Targeting mTOR could overcome the resistance against FGFR1 inhibitors.
Fig. 7: The enhanced amino acid metabolism induced the activation of mTORC1.
Fig. 8: Schematic diagram of the resistance against FGFR1 inhibitors.

Similar content being viewed by others

Data availability

The sequence data of RNA-seq and ATAC-seq reported in this study have been deposited in the Genome Sequence Archive (GSA) for human under accession number HRA003406 and HRA003410 respectively. Other published data used in this paper were listed as follows: RNA-seq data of T-ALL cohorts were from Genome Sequence Archive (GSA) for human (HRA000122), Gene Expression Omnibus (GEO) (GSE26713), and database of genotypes and phenotypes (TARGET, phs000464). RNA-seq data about a primary and relapse T-ALL cohort were from NCBI BioProject (PRJNA534488). Survival data of T-ALL were from TARGET, phs000464, and of B-ALL were from TARGET, phs000463. H3K27ac ChIP-seq of Jurkat cells was from Gene Expression Omnibus (GEO), GSE68978. H3K4me3 ChIP-seq of Jurkat cells was from Gene Expression Omnibus (GEO), GSE151297. Data related to this paper could be requested from the corresponding author.

References

  1. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood. 2012;119:34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120:1165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166:421–4.

    Article  CAS  PubMed  Google Scholar 

  4. Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the children’s oncology group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34:280–300.

    Article  CAS  PubMed  Google Scholar 

  6. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  PubMed  Google Scholar 

  7. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.

    Article  CAS  PubMed  Google Scholar 

  8. Katoh M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol Sci. 2016;37:1081–96.

    Article  CAS  PubMed  Google Scholar 

  9. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15:25–41.

    Article  CAS  PubMed  Google Scholar 

  10. Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007;9:R23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim HR, Kim DJ, Kang DR, Lee JG, Lim SM, Lee CY, et al. Fibroblast growth factor receptor 1 gene amplification is associated with poor survival and cigarette smoking dosage in patients with resected squamous cell lung cancer. J Clin Oncol. 2013;31:731–7.

    Article  PubMed  Google Scholar 

  12. Xiao H, Wang K, Li D, Wang K, Yu M. Evaluation of FGFR1 as a diagnostic biomarker for ovarian cancer using TCGA and GEO datasets. PeerJ. 2021;9:e10817.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Agelopoulos K, Richter GH, Schmidt E, Dirksen U, von Heyking K, Moser B, et al. Deep sequencing in conjunction with expression and functional analyses reveals activation of FGFR1 in ewing sarcoma. Clin Cancer Res. 2015;21:4935–46.

    Article  CAS  PubMed  Google Scholar 

  14. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  15. Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum Pathol. 2010;41:461–76.

    Article  CAS  PubMed  Google Scholar 

  16. Qin H, Wu Q, Cowell JK, Ren M. FGFR1OP2-FGFR1 induced myeloid leukemia and T-cell lymphoma in a mouse model. Haematologica. 2016;101:e91–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren M, Li X, Cowell JK. Genetic fingerprinting of the development and progression of T-cell lymphoma in a murine model of atypical myeloproliferative disorder initiated by the ZNF198-fibroblast growth factor receptor-1 chimeric tyrosine kinase. Blood. 2009;114:1576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wasag B, Lierman E, Meeus P, Cools J, Vandenberghe P. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica. 2011;96:922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krook MA, Reeser JW, Ernst G, Barker H, Wilberding M, Li G, et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer. 2021;124:880–92.

    Article  CAS  PubMed  Google Scholar 

  20. Sohl CD, Ryan MR, Luo B, Frey KM, Anderson KS. Illuminating the molecular mechanisms of tyrosine kinase inhibitor resistance for the FGFR1 gatekeeper mutation: the Achilles’ heel of targeted therapy. ACS Chem Biol. 2015;10:1319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cowell JK, Qin H, Hu T, Wu Q, Bhole A, Ren M. Mutation in the FGFR1 tyrosine kinase domain or inactivation of PTEN is associated with acquired resistance to FGFR inhibitors in FGFR1-driven leukemia/lymphomas. Int J Cancer. 2017;141:1822–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Cai B, Chong Y, Zhang H, Kemp CA, Lu S, et al. Downregulation of PUMA underlies resistance to FGFR1 inhibitors in the stem cell leukemia/lymphoma syndrome. Cell Death Dis. 2020;11:884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi J, Zhang Z, Cen H, Wu H, Zhang S, Liu J, et al. CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity. J Hematol Oncol. 2021;14:162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schubbert S, Cardenas A, Chen H, Garcia C, Guo W, Bradner J, et al. Targeting the MYC and PI3K pathways eliminates leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Cancer Res. 2014;74:7048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, et al. T-ALL leukemia stem cell ‘stemness’ is epigenetically controlled by the master regulator SPI1. Elife. 2018;7:e38314.

  26. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7.

    Article  CAS  PubMed  Google Scholar 

  27. Yang L, Chen F, Zhu H, Chen Y, Dong B, Shi M, et al. 3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nat Commun. 2021;12:3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47:W212–W224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 2019;29:1363–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics. 2014;30:2503–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang D, Xiang H, Ning C, Liu H, Liu JF, Zhao X. Mitochondrial DNA enrichment reduced NUMT contamination in porcine NGS analyses. Brief Bioinform. 2020;21:1368–77.

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Fear J, Hu J, Haecker I, Zhou L, Renne R, et al. Leveraging biological replicates to improve analysis in ChIP-seq experiments. Comput Struct Biotechnol J. 2014;9:e201401002.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luchtel RA, Bhagat T, Pradhan K, Jacobs WR Jr., Levine M, Verma A, et al. High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model. Proc Natl Acad Sci USA. 2020;117:1666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu H, Dong B, Zhang Y, Wang M, Rao J, Cui B, et al. Integrated genomic analyses identify high-risk factors and actionable targets in T-cell acute lymphoblastic leukemia. Blood Sci. 2022;4:16–28.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19:484–97.

    Article  CAS  PubMed  Google Scholar 

  41. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22:259–67.

    Article  CAS  PubMed  Google Scholar 

  42. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 2017;13:815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa-Mattioli M, Walter P. The integrated stress response: from mechanism to disease. Science. 2020;368:eaat5314.

  45. Tian X, Zhang S, Zhou L, Seyhan AA, Hernandez Borrero L, Zhang Y, et al. Targeting the integrated stress response in cancer therapy. Front Pharmacol. 2021;12:747837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17:1374–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robert F, Williams C, Yan Y, Donohue E, Cencic R, Burley SK, et al. Blocking UV-induced eIF2alpha phosphorylation with small molecule inhibitors of GCN2. Chem Biol Drug Des. 2009;74:57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reid MA, Allen AE, Liu S, Liberti MV, Liu P, Liu X, et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun. 2018;9:5442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med. 2020;52:15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14:133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318–32.

    Article  CAS  PubMed  Google Scholar 

  52. Hoy SM. Pemigatinib: first approval. Drugs. 2020;80:923–9.

    Article  PubMed  Google Scholar 

  53. Kang C. Infigratinib: first approval. Drugs. 2021;81:1355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Markham A. Erdafitinib: first global approval. Drugs. 2019;79:1017–21.

    Article  CAS  PubMed  Google Scholar 

  55. Nogova L, Sequist LV, Perez Garcia JM, Andre F, Delord JP, Hidalgo M, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol. 2017;35:157–65.

    Article  CAS  PubMed  Google Scholar 

  56. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab. 2017;28:794–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, et al. YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 2021;13:e14351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, et al. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-beta1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 2021;12:334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li C, Wu B, Li Y, Chen J, Ye Z, Tian X, et al. Amino acid catabolism regulates hematopoietic stem cell proteostasis via a GCN2-eIF2alpha axis. Cell Stem Cell. 2022;29:1119–34.e1117.

    Article  CAS  PubMed  Google Scholar 

  60. Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69:169–81.

    Article  CAS  PubMed  Google Scholar 

  61. Luo L, Gribskov M, Wang S Bibliometric review of ATAC-Seq and its application in gene expression. Brief Bioinform. 2022;23:bbac061.

  62. Butler M, van der Meer LT, van Leeuwen FN. Amino acid depletion therapies: starving cancer cells to death. Trends Endocrinol Metab. 2021;32:367–81.

    Article  CAS  PubMed  Google Scholar 

  63. Tabe Y, Lorenzi PL, Konopleva M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood. 2019;134:1014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Williams RT, Guarecuco R, Gates LA, Barrows D, Passarelli MC, Carey B, et al. ZBTB1 regulates asparagine synthesis and leukemia cell response to L-asparaginase. Cell Metab. 2020;31:852–61.e856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou X, Zhou R, Rao X, Hong J, Li Q, Jie X, et al. Activated amino acid response pathway generates apatinib resistance by reprograming glutamine metabolism in non-small-cell lung cancer. Cell Death Dis. 2022;13:636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Munde M, Wang S, Kumar A, Stephens CE, Farahat AA, Boykin DW, et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res. 2014;42:1379–90.

    Article  CAS  PubMed  Google Scholar 

  67. Nguyen LV, Caldas C. Functional genomics approaches to improve pre-clinical drug screening and biomarker discovery. EMBO Mol Med. 2021;13:e13189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ren M, Cowell JK. Constitutive Notch pathway activation in murine ZMYM2-FGFR1-induced T-cell lymphomas associated with atypical myeloproliferative disease. Blood. 2011;117:6837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92–111.

    Article  CAS  PubMed  Google Scholar 

  70. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell. 2016;165:153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012;47:349–58.

    Article  CAS  PubMed  Google Scholar 

  72. Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science. 2017;358:813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang S, Gu C, Huang L, Wu H, Shi J, Zhang Z, et al. The third-generation anti-CD30 CAR T-cells specifically homing to the tumor and mediating powerful antitumor activity. Sci Rep. 2022;12:10488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are obliged to Jian Lin, Long Chen, Nuo Xu (College of Chemistry and Molecular Engineering, Peking University), Hu-dan Liu (Medical Research Institute, Wuhan University), and Yuan Cao, Piao Zou (Analytical & Testing Center, Wuhan University of Science and Technology) for their assistance in the experiments. This work was funded by the grants from the Wuhan Science and Technology Plan Project (2019030703011533) to TCZ, China Postdoctoral Science Foundation (2021M702538), Department of Education of Hubei Province (B2021023), and National Natural Science Foundation of China (82203497) to JPL, and also supported by Natural Science Foundation of Hubei Province (2022CFB029) and National Natural Science Foundation of China (82100193) to HCZ.

Author information

Authors and Affiliations

Authors

Contributions

HCZ, ZJZ, and TCZ designed the experimental plans; ZJZ, AQR, JZS, JPL, XYL, Zhi-jie Zhang, YZT, YZ, NNY, XYZ, CPL, GD, JXZ, MJX, and YY performed the experiments. QFW and QC performed the bioinformatic analysis. ZJZ and HCZ analyzed the data and drafted the manuscript. FS, YL, JH, QLA, FLZ, and HW were involved in the revision of the manuscript.

Corresponding authors

Correspondence to Tong-cun Zhang or Hai-chuan Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zj., Wu, Qf., Ren, Aq. et al. ATF4 renders human T-cell acute lymphoblastic leukemia cell resistance to FGFR1 inhibitors through amino acid metabolic reprogramming. Acta Pharmacol Sin 44, 2282–2295 (2023). https://doi.org/10.1038/s41401-023-01108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01108-4

Keywords

Search

Quick links