Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-arrestin2 deficiency ameliorates S-100-induced autoimmune hepatitis in mice by inhibiting infiltration of monocyte-derived macrophage and attenuating hepatocyte apoptosis

Abstract

Autoimmune hepatitis (AIH) is a progressive hepatitis syndrome characterized by high transaminase levels, interface hepatitis, hypergammaglobulinemia, and the presence of autoantibodies. Misdiagnosis or delayed treatment of AIH can lead to cirrhosis or liver failure, which poses a major risk to human health. β-Arrestin2, a key scaffold protein for intracellular signaling pathways, has been found to be involved in many autoimmune diseases such as Sjogren’s syndrome and rheumatoid arthritis. However, whether β-arrestin2 plays a role in AIH remains unknown. In the present study, S-100-induced AIH was established in both wild-type mice and β-arrestin2 knockout (Arrb2 KO) mice, and the experiments identified that liver β-arrestin2 expression was gradually increased, and positively correlated to serum ANA, ALT and AST levels during AIH progression. Furthermore, β-arrestin2 deficiency ameliorated hepatic pathological damage, decreased serum autoantibody and inflammatory cytokine levels. β-arrestin2 deficiency also inhibited hepatocyte apoptosis and prevented the infiltration of monocyte-derived macrophages into the damaged liver. In vitro experiments revealed that β-arrestin2 knockdown suppressed the migration and differentiation of THP-1 cells, whereas β-arrestin2 overexpression promoted the migration of THP-1 cells, which was regulated by the activation of the ERK and p38 MAPK pathways. In addition, β-arrestin2 deficiency attenuated TNF-α-induced primary hepatocyte apoptosis by activating the Akt/GSK-3β pathway. These results suggest that β-arrestin2 deficiency ameliorates AIH by inhibiting the migration and differentiation of monocytes, decreasing the infiltration of monocyte-derived macrophages into the liver, thereby reducing inflammatory cytokines-induced hepatocytes apoptosis. Therefore, β-arrestin2 may act as an effective therapeutic target for AIH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of β-arrestin2 increased in liver during autoimmune hepatitis (AIH) development.
Fig. 2: β-arrestin2 deficiency ameliorates AIH in mice.
Fig. 3: β-arrestin2 deficiency reduces hepatocyte apoptosis in AIH.
Fig. 4: β-arrestin2 deficiency inhibits inflammation and infiltration of monocyte-derived macrophages in AIH.
Fig. 5: β-arrestin2 plays a crucial role in THP-1 monocyte migration.
Fig. 6: β-arrestin2 regulates the migration of THP-1 monocytes via ERK and p38 MAPK signaling pathways.
Fig. 7: Silencing of β-arrestin2 inhibits differentiation of THP-1 cells to macrophages and reduces hepatocyte apoptosis induced by TNF-α secreted from macrophages.
Fig. 8: Deletion of β-arrestin2 reduces apoptosis of primary hepatocytes by activating the Akt/GSK-3β pathway.

Similar content being viewed by others

References

  1. Beer A, Dienes HP. Autoimmune hepatitis-is histology conclusive? Ann Transl Med. 2021;9:733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Katsumi T, Ueno Y. Epidemiology and surveillance of autoimmune hepatitis in Asia. Liver Int. 2022;42:2015–22.

    Article  CAS  PubMed  Google Scholar 

  3. Baeck C, Tacke F. Balance of inflammatory pathways and interplay of immune cells in the liver during homeostasis and injury. EXCLI J. 2014;13:67–81.

    PubMed  PubMed Central  Google Scholar 

  4. Longhi MS, Mitry RR, Samyn M, Scalori A, Hussain MJ, Quaglia A, et al. Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology. 2009;50:130–42.

    Article  CAS  PubMed  Google Scholar 

  5. Bartneck M, Fech V, Ehling J, Govaere O, Warzecha KT, Hittatiya K, et al. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology. 2016;63:1310–24.

    Article  CAS  PubMed  Google Scholar 

  6. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306–21.

    Article  CAS  PubMed  Google Scholar 

  7. Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun. 2016;66:60–75.

    Article  CAS  PubMed  Google Scholar 

  8. Tu Y, Chen D, Pan T, Chen Z, Xu J, Jin L, et al. Inhibition of miR-431-5p attenuated liver apoptosis through KLF15/p53 signal pathway in S100 induced autoimmune hepatitis mice. Life Sci. 2021;280:119698.

    Article  CAS  PubMed  Google Scholar 

  9. Czaja AJ. Targeting apoptosis in autoimmune hepatitis. Dig Dis Sci. 2014;59:2890–904.

    Article  CAS  PubMed  Google Scholar 

  10. Latorraca NR, Masureel M, Hollingsworth SA, Heydenreich FM, Suomivuori CM, Brinton C, et al. How GPCR phosphorylation patterns orchestrate arrestin-mediated signaling. Cell. 2020;183:1813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma TL, Zhou Y, Zhang CY, Gao ZA, Duan JX. The role and mechanism of beta-arrestin2 in signal transduction. Life Sci. 2021;275:119364.

    Article  CAS  PubMed  Google Scholar 

  12. Sun WY, Gu YJ, Li XR, Sun JC, Du JJ, Chen JY, et al. β-arrestin2 deficiency protects against hepatic fibrosis in mice and prevents synthesis of extracellular matrix. Cell Death Dis. 2020;11:389.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun JC, Du JJ, Li XQ, Li N, Wei W, Sun WY. Depletion of β-arrestin2 protects against CCl4-induced liver injury in mice. Biochem Biophys Res Commun. 2020;522:485–91.

    Article  CAS  PubMed  Google Scholar 

  14. Du JJ, Sun JC, Li N, Li XQ, Sun WY, Wei W. beta-Arrestin2 deficiency attenuates oxidative stress in mouse hepatic fibrosis through modulation of NOX4. Acta Pharmacol Sin. 2021;42:1090–100.

    Article  CAS  PubMed  Google Scholar 

  15. Sun WY, Sun JC, Li XR, Peng WT, Wei W. Breeding and genotype identification of Arrb2 gene knockout mice. Chin Pharm Bull. 2018;34:878–81.

    Google Scholar 

  16. Lohse AW, Manns M, Dienes HP, Meyer zum Büschenfelde KH, Cohen IR. Experimental autoimmune hepatitis: disease induction, time course and T-cell reactivity. Hepatology. 1990;11:24–30.

    Article  CAS  PubMed  Google Scholar 

  17. Charni-Natan M, Goldstein I. Protocol for primary mouse hepatocyte isolation. STAR Protoc. 2020;1:100086.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chang YY, Lu CW, Jean WH, Shieh JS, Lin TY. Phorbol myristate acetate induces differentiation of THP-1 cells in a nitric oxide-dependent manner. Nitric Oxide. 2021;109-110:33–41.

    Article  CAS  PubMed  Google Scholar 

  19. Galaski J, Weiler-Normann C, Schakat M, Zachou K, Muratori P, et al. Update of the simplified criteria for autoimmune hepatitis: Evaluation of the methodology for immunoserological testing. J Hepatol. 2021;74:312–20.

    Article  CAS  PubMed  Google Scholar 

  20. Hwang Y, Kim JC, Tae G. Significantly enhanced recovery of acute liver failure by liver targeted delivery of stem cells via heparin functionalization. Biomaterials. 2019;209:67–78.

    Article  CAS  PubMed  Google Scholar 

  21. Ichiki Y, Aoki CA, Bowlus CL, Shimoda S, Ishibashi H, Gershwin ME. T cell immunity in autoimmune hepatitis. Autoimmun Rev. 2005;4:315–21.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Yan W, Yuan W, Wang P, Huang D, Luo X, et al. Treg/Th17 imbalance is associated with poor autoimmune hepatitis prognosis. Clin Immunol. 2019;198:79–88.

    Article  CAS  PubMed  Google Scholar 

  23. Bai J, Odin JA. Apoptosis and the liver: relation to autoimmunity and related conditions. Autoimmun Rev. 2003;2:36–42.

    Article  PubMed  Google Scholar 

  24. Sharma S, Singh RL, Kakkar P. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol. 2011;49:770–9.

    Article  CAS  PubMed  Google Scholar 

  25. Jing ZT, Liu W, Xue CR, Wu SX, Chen WN, Lin XJ, et al. AKT activator SC79 protects hepatocytes from TNF-alpha-mediated apoptosis and alleviates d-Gal/LPS-induced liver injury. Am J Physiol Gastrointest Liver Physiol. 2019;316:387–96.

    Article  Google Scholar 

  26. Gu YJ, Sun WY, Zhang S, Wu JJ, Wei W. The emerging roles of beta-arrestins in fibrotic diseases. Acta Pharmacol Sin. 2015;36:1277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Jiang W, Zhou AL, Zhao M, Jiang DR. Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK-3beta signaling pathway. World J Gastroenterol. 2017;23:3839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao L, Quan XB, Zeng WJ, Yang XO, Wang MJ. Mechanism of hepatocyte apoptosis. J Cell Death. 2016;9:19–29.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Czaja AJ, Donaldson PT. Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis. Immunol Rev. 2000;174:250–9.

    Article  CAS  PubMed  Google Scholar 

  30. Kim SJ, Chang HJ, Volin MV, Umar S, Van Raemdonck K, Chevalier A, et al. Macrophages are the primary effector cells in IL-7-induced arthritis. Cell Mol Immunol. 2020;17:728–40.

    Article  CAS  PubMed  Google Scholar 

  31. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci USA. 2012;109:3186–95.

    Article  Google Scholar 

  32. Zhang M, Liu HL, Huang K, Peng Y, Tao YY, Zhao CQ, et al. Fuzheng Huayu recipe prevented and treated CCl4-induced mice liver fibrosis through regulating polarization and chemotaxis of intrahepatic macrophages via CCL2 and CX3CL1. Evid Based Complement Altern Med. 2020;2020:8591892.

    Article  Google Scholar 

  33. Liu Y, Wang W, Zou Z, Fan Q, Hu Z, Feng Z, et al. Monocyte chemoattractant protein 1 released from macrophages induced by hepatitis C virus promotes monocytes migration. Virus Res. 2017;240:190–6.

    Article  CAS  PubMed  Google Scholar 

  34. Meconi S, Jacomo V, Boquet P, Raoult D, Mege JL, Capo C. Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect Immun. 1998;66:5527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu Y, Hu X, Boumsell L, Ivashkiv LB. IFN-gamma and STAT1 arrest monocyte migration and modulate RAC/CDC42 pathways. J Immunol. 2008;180:8057–65.

    Article  CAS  PubMed  Google Scholar 

  36. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35:600–4.

    Article  CAS  PubMed  Google Scholar 

  37. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117:4619–28.

    Article  CAS  PubMed  Google Scholar 

  38. Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17:349–62.

    Article  CAS  PubMed  Google Scholar 

  39. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 2010;5:e8668.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen Y, Yang M, Huang W, Chen W, Zhao Y, Schulte ML, et al. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ Res. 2019;125:1087–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV. CD68/macrosialin: not just a histochemical marker. Lab Invest. 2017;97:4–13.

    Article  CAS  PubMed  Google Scholar 

  42. Bhattacharya A, Ghosh P, Prasad R, Ghosh A, Das K, Roy A, et al. MAP Kinase driven actomyosin rearrangement is a crucial regulator of monocyte to macrophage differentiation. Cell Signal. 2020;73:109691.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng LX, Tao J, Liu HL, Tan SW, Yang YD, Peng XJ, et al. β-Arrestin2 encourages inflammation-induced epithelial apoptosis through ER stress/PUMA in colitis. Mucosal Immunol. 2015;8:683–95.

    Article  CAS  PubMed  Google Scholar 

  44. Huang L, Liu Q, Zhou T, Zhang J, Tian Q, Zhang Q, et al. Deficiency of beta-arrestin2 alleviates apoptosis through GRP78-ATF6-CHOP signaling pathway in primary Sjogren’s syndrome. Int Immunopharmacol. 2021;101:108281.

    Article  CAS  PubMed  Google Scholar 

  45. Mieli-Vergani G, Vergani D, Czaja AJ, Manns MP, Krawitt EL, Vierling JM, et al. Autoimmune hepatitis. Nat Rev Dis Prim. 2018;4:18017.

    Article  PubMed  Google Scholar 

  46. Akberova D, Kiassov AP, Abdulganieva D. Serum cytokine levels and their relation to clinical features in patients with autoimmune liver diseases. J Immunol Res. 2017;2017:9829436.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ma L, Zhang LW, Zhuang Y, Ding YB, Chen JP. Exploration the significance of Tfh and related molecules on C57BL/6 mice model of experimental autoimmune hepatitis. J Microbiol Immunol Infect. 2021;54:221–7.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou WJ, Wang DD, Tao J, Tai Y, Zhou ZW, Wang Z, et al. Deficiency of beta-arrestin2 exacerbates inflammatory arthritis by facilitating plasma cell formation. Acta Pharmacol Sin. 2021;42:755–66.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Wang GY, Liu SK, Yang MY, Ma LB, Li K, et al. β-arrestin2 stimulates interleukin-17 production and expression of CD4+ T lymphocytes in a murine asthma model. Iran J Allergy Asthma Immunol. 2011;10:171–82.

    CAS  PubMed  Google Scholar 

  50. Renand A, Cervera-Marzal I, Gil L, Dong C, Garcia A, Kervagoret E, et al. Integrative molecular profiling of autoreactive CD4+ T cells in autoimmune hepatitis. J Hepatol. 2020;73:1379–90.

    Article  CAS  PubMed  Google Scholar 

  51. Ye T, Wang T, Yang X, Fan X, Wen M, Shen Y, et al. Comparison of concanavalin a-induced murine autoimmune hepatitis models. Cell Physiol Biochem. 2018;46:1241–51.

    Article  CAS  PubMed  Google Scholar 

  52. Li C, Gao Q, Jiang H, Liu C, Du Y, Li L. Changes of macrophage and CD4 T cell in inflammatory response in type 1 diabetic mice. Sci Rep. 2022;12:14929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou D, Chen YT, Chen F, Gallup M, Vijmasi T, Bahrami AF, et al. Critical involvement of macrophage infiltration in the development of Sjögren’s syndrome-associated dry eye. Am J Pathol. 2012;181:753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang T, Shu HH, Chang L, Ye F, Xu KQ, Huang WQ. Resolvin D1 protects against hepatic ischemia/reperfusion injury in rats. Int Immunopharmacol. 2015;28:322–7.

    Article  PubMed  Google Scholar 

  55. Yin D, Yang X, Li H, Fan H, Zhang X, Feng Y, et al. β-Arrestin 2 promotes hepatocyte apoptosis by inhibiting Akt protein. J Biol Chem. 2016;291:605–12.

    Article  CAS  PubMed  Google Scholar 

  56. Xu L, Liu W, Bai F, Xu Y, Liang X, Ma C, et al. Hepatic macrophage as a key player in fatty liver disease. Front Immunol. 2021;12:708978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Almishri W, Shaheen AA, Sharkey KA, Swain MG. The antidepressant mirtazapine inhibits hepatic innate immune networks to attenuate immune-mediated liver injury in mice. Front Immunol. 2019;10:803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ogawa M, Mori Y, Ueda S, Mori T, Makino Y, Hori J, et al. Protective effects of FUT-175 on acute massive hepatic necrosis induced in mice following endotoxin injection and immunization with liver proteins. J Hepatol. 1993;19:393–400.

    Article  CAS  PubMed  Google Scholar 

  59. Watari K, Nakaya M, Nishida M, Kim KM, Kurose H. β-arrestin2 in infiltrated macrophages inhibits excessive inflammation after myocardial infarction. PLoS One. 2013;8:e68351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walker JK, Fong AM, Lawson BL, Savov JD, Patel DD, Schwartz DA, et al. Beta-arrestin-2 regulates the development of allergic asthma. J Clin Invest. 2003;112:566–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci USA. 2002;99:7478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheung R, Malik M, Ravyn V, Tomkowicz B, Ptasznik A, Collman RG. An arrestin-dependent multi-kinase signaling complex mediates MIP-1beta/CCL4 signaling and chemotaxis of primary human macrophages. J Leukoc Biol. 2009;86:833–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schaks M, Giannone G, Rottner K. Actin dynamics in cell migration. Essays Biochem. 2019;63:483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11:762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ge L, Ly Y, Hollenberg M, DeFea K. A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem. 2003;278:34418–426.

    Article  CAS  PubMed  Google Scholar 

  66. Lin R, Choi YH, Zidar DA, Walker JKL. Beta-arrestin-2-dependent signaling promotes CCR4-mediated chemotaxis of murine T-helper type 2 cells. Am J Respir Cell Mol Biol. 2018;58:745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsai CS, Lin YW, Huang CY, Shih CM, Tsai YT, Tsao NW, et al. Thrombomodulin regulates monocye differentiation via PKC delta and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 81770605), the Research Level Improvement Program of Anhui Medical University (No. 2021xkjT016), the Research Fund of Anhui Institute of Translational Medicine (No. 2022zhyx-C07), the Program of Basic and Clinical Collaborative Research (No. 2022sfy014). We acknowledge the help of the staff members of the Institute of Clinical Pharmacology, Anhui Medical University in conducting the study.

Author information

Authors and Affiliations

Authors

Contributions

WYS, HW and WW contributed to conception and experiment design; TTC, XQL, NL, YPX, YHW, ZYW, MQ and SNZ performed the experiments under the supervision of WYS and WW; TTC and XQL analyzed the data, and drafted the manuscript; WYS, SHZ and HW revised the manuscript. All authors have confirmed the submission of this manuscript.

Corresponding authors

Correspondence to Wei Wei, Hua Wang or Wu-yi Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Tt., Li, Xq., Li, N. et al. β-arrestin2 deficiency ameliorates S-100-induced autoimmune hepatitis in mice by inhibiting infiltration of monocyte-derived macrophage and attenuating hepatocyte apoptosis. Acta Pharmacol Sin 44, 2048–2064 (2023). https://doi.org/10.1038/s41401-023-01103-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01103-9

Keywords

Search

Quick links