Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioinspired PROTAC-induced macrophage fate determination alleviates atherosclerosis

Abstract

Atherosclerosis is a major cause of death and disability in cardiovascular disease. Atherosclerosis associated with lipid accumulation and chronic inflammation leads to plaques formation in arterial walls and luminal stenosis in carotid arteries. Current approaches such as surgery or treatment with statins encounter big challenges in curing atherosclerosis plaque. The infiltration of proinflammatory M1 macrophages plays an essential role in the occurrence and development of atherosclerosis plaque. A recent study shows that TRIM24, an E3 ubiquitin ligase of a Trim family protein, acts as a valve to inhibit the polarization of anti-inflammatory M2 macrophages, and elimination of TRIM24 opens an avenue to achieve the M2 polarization. Proteolysis-targeting chimera (PROTAC) technology has emerged as a novel tool for the selective degradation of targeting proteins. But the low bioavailability and cell specificity of PROTAC reagents hinder their applications in treating atherosclerosis plaque. In this study we constructed a type of bioinspired PROTAC by coating the PROTAC degrader (dTRIM24)-loaded PLGA nanoparticles with M2 macrophage membrane (MELT) for atherosclerosis treatment. MELT was characterized by morphology, size, and stability. MELT displayed enhanced specificity to M1 macrophages as well as acidic-responsive release of dTRIM24. After intravenous administration, MELT showed significantly improved accumulation in atherosclerotic plaque of high fat and high cholesterol diet-fed atherosclerotic (ApoE−/−) mice through binding to M1 macrophages and inducing effective and precise TRIM24 degradation, thus resulting in the polarization of M2 macrophages, which led to great reduction of plaque formation. These results suggest that MELT can be considered a potential therapeutic agent for targeting atherosclerotic plaque and alleviating atherosclerosis progression, providing an effective strategy for targeted atherosclerosis therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of the bioinspired PROTAC MELT and its PROTAC-induced macrophage fate determination for atherosclerosis therapy.
Fig. 2: Preparation and characterizations of MELT.
Fig. 3: Cellular uptakes of M2 macrophage membrane coated nanoparticles with CLSM images and FACS analysis.
Fig. 4: In vitro biosafety and biocompatibility evaluation of MELT.
Fig. 5: The evaluation of TRIM24 degradation and M2 macrophage polarization induced by MELT in vitro.
Fig. 6: The pharmacokinetics and aortic plaque targeting.
Fig. 7: The in vivo anti-atherosclerotic efficacy of MELT on ApoE−/− mice.
Fig. 8: Immunofluorescence analysis of the aortic root sections on ApoE−/− mice after different treatments.
Fig. 9: The in vivo biosafety evaluation of MELT on ApoE−/− mice. After 31 d of treatment, the mice were sacrificed, and the blood and tissues were collected, followed by biochemical analysis and H&E imaging.

Similar content being viewed by others

References

  1. Bjorkegren J, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185:1630–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8:e721–9.

    Article  PubMed  Google Scholar 

  3. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Prim. 2019;5:56.

    Article  PubMed  Google Scholar 

  4. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.

    Article  CAS  PubMed  Google Scholar 

  5. Yu D, Liao JK. Emerging views of statin pleiotropy and cholesterol lowering. Cardiovasc Res. 2022;118:413–23.

    Article  CAS  PubMed  Google Scholar 

  6. Lee SE, Chang HJ, Sung JM, Park HB, Heo R, Rizvi A, et al. Effects of statins on coronary atherosclerotic plaques: the paradigm study. JACC Cardiovasc Imaging. 2018;11:1475–84.

    Article  PubMed  Google Scholar 

  7. Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;8:3065.

    Article  Google Scholar 

  8. Pham LM, Kim EC, Ou W, Phung CD, Nguyen TT, Pham TT, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677.

    Article  CAS  PubMed  Google Scholar 

  9. Kim M, Sahu A, Hwang Y, Kim GB, Nam GH, Kim IS, et al. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E-/- mice. Biomaterials. 2020;226:119550.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Wang L, Xie Y, Wang P, Deng S, Qin A, et al. Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases. Angew Chem Int Ed. 2019;58:12404–8.

    Article  CAS  Google Scholar 

  11. Chinetti-Gbaguidi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12:10–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 2020;17:216–28.

    Article  CAS  PubMed  Google Scholar 

  13. Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16:389–406.

    PubMed  PubMed Central  Google Scholar 

  14. Teo KYW, Sevencan C, Cheow YA, Zhang S, Leong DT, Toh WS. Macrophage polarization as a facile strategy to enhance efficacy of macrophage membrane-coated nanoparticles in osteoarthritis. Small Sci. 2022;2:2100116.

    Article  CAS  Google Scholar 

  15. Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 2022;19:228–49.

    Article  PubMed  Google Scholar 

  16. Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci. 2019;6:1900513.

    Article  CAS  Google Scholar 

  17. Lin Y, Li S, Xiao Z, Chen S, Yang L, Peng Q, et al. Epigenetic inhibition assisted chemotherapeutic treatment of lung cancer based on artificial exosomes. Pharmacol Res. 2021;171:105787.

    Article  CAS  PubMed  Google Scholar 

  18. Li YJ, Wu JY, Liu J, Xu W, Qiu X, Huang S, et al. Artificial exosomes for translational nanomedicine. J Nanobiotechnol. 2021;19:242.

    Article  Google Scholar 

  19. Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 2019;10:4353.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B. 2020;10:207–38.

    Article  CAS  PubMed  Google Scholar 

  21. Yang T, Hu Y, Miao J, Chen J, Liu J, Cheng Y, et al. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharm Sin B. 2022;12:2658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang C, Zeng Z, Cui D, He S, Jiang Y, Li J, et al. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat Commun. 2021;12:2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang HT, Peng R, Chen S, Shen A, Zhao L, Tang W, et al. Versatile nano-PROTAC-induced epigenetic reader degradation for efficient lung cancer therapy. Adv Sci. 2022;9:e2202039.

    Article  Google Scholar 

  24. Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181:102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han M, Sun Y. Pharmacological targeting of tripartite motif containing 24 for the treatment of glioblastoma. J Transl Med. 2021;19:505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S, Ko E, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed. 2016;55:807–10.

    Article  CAS  Google Scholar 

  27. Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018;14:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ke R, Zhen X, Wang HS, Li L, Wang H, Wang S, et al. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307–19.

    Article  CAS  PubMed  Google Scholar 

  29. Qin A, Chen S, Li S, Li Q, Huang X, Xia L, et al. Artificial stem cells mediated inflammation-tropic delivery of antiviral drugs for pneumonia treatment. J Nanobiotechnol. 2022;20:335.

    Article  CAS  Google Scholar 

  30. Yang L, Lin Y, Zhang J, Huang J, Qin A, Miao Y, et al. Biomimetic metal-organic frameworks navigated biological bombs for efficient lung cancer therapy. J Colloid Interface Sci. 2022;625:532–43.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Zhang K, Qin X, Li T, Qiu J, Yin T, et al. Biomimetic nanotherapies: red blood cell-based core-shell structured nanocomplexes for atherosclerosis management. Adv Sci. 2019;6:1900172.

    Article  Google Scholar 

  32. Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 2020;126:25–37.

    Article  CAS  PubMed  Google Scholar 

  33. Ren X, Yang S, Yu N, Sharjeel A, Jiang Q, Macharia DK, et al. Cell membrane camouflaged bismuth nanoparticles for targeted photothermal therapy of homotypic tumors. J Colloid Interface Sci. 2021;591:229–38.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Yang L, Wang H, Huang J, Lin Y, Chen S, et al. Bioinspired metal-organic frameworks mediated efficient delivery of siRNA for cancer therapy. Chem Engin J. 2021;426:131926.

    Article  CAS  Google Scholar 

  35. Escareño N, Hassan N, Kogan MJ, Juárez J, Topete A, Daneri-Navarro A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: significance in drug release, uptake, and cytotoxicity in breast cancer cells. J Colloid Interface Sci. 2021;591:440–50.

    Article  PubMed  Google Scholar 

  36. Zhang Y, Qin Y, Li H, Peng Q, Wang P, Yang L, et al. Artificial platelets for efficient siRNA delivery to clear “bad cholesterol”. ACS Appl Mater Interfaces. 2020;12:28034–46.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Deng S, Zhang Y, Peng Q, Li H, Wang P, et al. Homotypic targeting delivery of siRNA with artificial cancer cells. Adv Health Mater. 2020;9:e1900772.

    Article  Google Scholar 

  38. Yang H, Liu C, Wu Y, Yuan M, Huang J, Xia Y, et al. Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. Nano Tod. 2022;42:101351.

    Article  CAS  Google Scholar 

  39. Di Francesco V, Gurgone D, Palomba R, Ferreira MFMM, Catelani T, Cervadoro A, et al. Modulating lipoprotein transcellular transport and atherosclerotic plaque formation in ApoE−/− mice via nanoformulated lipid-methotrexate conjugates. ACS Appl Mater Interfaces. 2020;12:37943–56.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hossaini Nasr S, Rashidijahanabad Z, Ramadan S, Kauffman N, Parameswaran N, Zinn KR, et al. Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles. Nanoscale. 2020;12:9541–56.

    Article  CAS  PubMed  Google Scholar 

  41. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (82072047, 81700382), Natural Science Foundation of Guangdong Province (2019A1515012166), Research Foundation of Education Bureau of Guangdong Province (2021ZDZX2004), Basic and Applied Basic Research Project of Guangzhou (202102080390), Outstanding Youth Development Program of Guangzhou Medical University, and The Open Research Funds from The Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan Peoples Hospital (202201-303).

Author information

Authors and Affiliations

Authors

Contributions

LL, MYW, and LMZ designed the study and supervised the project. JHH, CJH, and XLG performed the experiments and analyzed the data. SWL and JHL improved the protocol. LNY, LL, and MYW wrote the draft. MYW and LMZ also worked on the data analysis and final manuscript preparation. The authors reviewed and approved the published version of the manuscript.

Corresponding authors

Correspondence to Lu Liang, Min-yan Wei or Ling-min Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Jh., Huang, Cj., Yu, Ln. et al. Bioinspired PROTAC-induced macrophage fate determination alleviates atherosclerosis. Acta Pharmacol Sin 44, 1962–1976 (2023). https://doi.org/10.1038/s41401-023-01088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01088-5

Keywords

Search

Quick links