Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inflachromene attenuates seizure severity in mouse epilepsy models via inhibiting HMGB1 translocation

Abstract

Epilepsy is not well controlled by current anti-seizure drugs (ASDs). High mobility group box 1 (HMGB1) is a DNA-binding protein in the nucleus regulating transcriptional activity and maintaining chromatin structure and DNA repair. In epileptic brains, HMGB1 is released by activated glia and neurons, interacting with various receptors like Toll-like receptor 4 (TLR4) and downstream glutamatergic NMDA receptor, thus enhancing neural excitability. But there is a lack of small-molecule drugs targeting the HMGB1-related pathways. In this study we evaluated the therapeutic potential of inflachromene (ICM), an HMGB-targeting small-molecule inhibitor, in mouse epilepsy models. Pentylenetetrazol-, kainic acid- and kindling-induced epilepsy models were established in mice. The mice were pre-treated with ICM (3, 10 mg/kg, i.p.). We showed that ICM pretreatment significantly reduced the severity of epileptic seizures in all the three epilepsy models. ICM (10 mg/kg) exerted the most apparent anti-seizure effect in kainic acid-induced epileptic status (SE) model. By immunohistochemical analysis of brain sections from kainic acid-induced SE mice, we found that kainic acid greatly enhanced HMGB1 translocation in the hippocampus, which was attenuated by ICM pretreatment in subregion- and cell type-dependent manners. Notably, in CA1 region, the seizure focus, ICM pretreatment mainly inhibited HMGB1 translocation in microglia. Furthermore, the anti-seizure effect of ICM was related to HMGB1 targeting, as pre-injection of anti-HMGB1 monoclonal antibody (5 mg/kg, i.p.) blocked the seizure-suppressing effect of ICM in kainic acid-induced SE model. In addition, ICM pretreatment significantly alleviated pyramidal neuronal loss and granule cell dispersion in kainic acid-induced SE model. These results demonstrate that ICM is an HMGB-targeting small molecule with anti-seizure potential, which may help develop a potential drug for treating epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ICM alleviates seizure severity in PTZ-induced seizure model.
Fig. 2: ICM alleviates seizure severity in hippocampal-kindled seizure model.
Fig. 3: ICM alleviates seizure severity in KA-induced SE model.
Fig. 4: ICM attenuates the increased HMGB1 translocation in KA-induced SE model.
Fig. 5: ICM attenuates the increased translocation of HMGB1 with cell-type specificity in different subregions of hippocampus.
Fig. 6: Anti-HMGB1 mAb abolishes the anti-seizure effect of ICM in KA-induced SE model.
Fig. 7: ICM alleviates pyramidal neuronal loss and granule cell dispersion after KA-induced SE.

Similar content being viewed by others

References

  1. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Prim. 2018;4:18024.

    Article  PubMed  Google Scholar 

  2. Wang Y, Chen Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol Ther. 2019;201:77–93.

    Article  CAS  PubMed  Google Scholar 

  3. Zienowicz M, Wisłowska A, Lehner M, Taracha E, Skórzewska A, Maciejak P, et al. The effect of fluoxetine in a model of chemically induced seizures-behavioral and immunocytochemical study. Neurosci Lett. 2005;373:226–31.

    Article  CAS  PubMed  Google Scholar 

  4. Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: A review. JAMA 2015;313:285–93.

    Article  PubMed  Google Scholar 

  5. Mandke P, Vasquez KM. Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair (Amst). 2019;83:102701.

    Article  CAS  PubMed  Google Scholar 

  6. Seong S-Y, Matzinger P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–78.

    Article  CAS  PubMed  Google Scholar 

  7. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paudel YN, Semple BD, Jones NC, Othman I, Shaikh MF. High mobility group box 1 (HMGB1) as a novel frontier in epileptogenesis: from pathogenesis to therapeutic approaches. J Neurochem. 2019;151:542–57.

    Article  CAS  PubMed  Google Scholar 

  9. Li YJ, Wang L, Zhang B, Gao F, Yang CM. Glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective effects in rats after lithium-pilocarpine-induced status epilepticus. J Pharm Pharmacol. 2019;71:390–9.

    Article  CAS  Google Scholar 

  10. Li C, Peng S, Liu X, Han C, Wang X, Jin T, et al. Glycyrrhizin, a direct HMGB1 antagonist, ameliorates inflammatory infiltration in a model of autoimmune thyroiditis via inhibition of TLR2-HMGB1 signaling. Thyroid 2017;27:722–31.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, et al. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun. 2017;64:308–19.

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, Nam Y, Koo JY, Lim D, Park J, Ock J, et al. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nat Chem Biol. 2014;10:1055–60.

    Article  CAS  PubMed  Google Scholar 

  13. Cho W, Koo JY, Park Y, Oh K, Lee S, Song JS, et al. Treatment of sepsis pathogenesis with High Mobility Group Box Protein 1-regulating anti-inflammatory agents. J Med Chem. 2017;60:170–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lüttjohann A, Fabene PF, van Luijtelaar G. A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav. 2009;98:579–86.

    Article  PubMed  Google Scholar 

  15. Wang Y, Xu C, Xu Z, Ji C, Liang J, Wang Y, et al. Depolarized GABAergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron. 2017;95:92–105.e5.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Wang Y, Xu C, Wang S, Tan N, Chen C, et al. Direct septum-hippocampus cholinergic circuit attenuates seizure through driving somatostatin inhibition. Biol Psychiatry. 2020;87:843–56.

    Article  CAS  PubMed  Google Scholar 

  17. Xu Z, Wang Y, Chen B, Xu C, Wu X, Wang Y, et al. Entorhinal principal neurons mediate brain-stimulation treatments for epilepsy. EBioMedicine. 2016;14:148–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paxinos G, Franklin KB. Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. (Academic press, 2019).

  19. Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37:2887–99.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, et al. Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy. Ann Neurol. 2021;90:377–90.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Shen Y, Cai X, Yu J, Chen C, Tan B, et al. Deep brain stimulation in the medial septum attenuates temporal lobe epilepsy via entrainment of hippocampal theta rhythm. CNS Neurosci Ther. 2021;27:577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu TT, Yu J, Liu K, Du Y, Qu FH, Guo F, et al. A crucial role of HMGB1 in orofacial and widespread pain sensitization following partial infraorbital nerve transection. Brain Behav Immun. 2020;88:114–24.

    Article  CAS  PubMed  Google Scholar 

  23. Du Y, Xu CL, Yu J, Liu K, Lin SD, Hu TT, et al. HMGB1 in the mPFC governs comorbid anxiety in neuropathic pain. J Headache Pain. 2022;23:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raol YH, Brooks-Kayal AR. Experimental models of seizures and epilepsies. Prog Mol Biol Transl Sci. 2012;105:57–82.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, et al. HMGB1 Is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics. 2020;17:710–21.

    Article  CAS  PubMed  Google Scholar 

  26. Morin F, Beaulieu C, Lacaille JC. Selective loss of GABA neurons in area CA1 of the rat hippocampus after intraventricular kainate. Epilepsy Res. 1998;32:363–9.

    Article  CAS  PubMed  Google Scholar 

  27. Devi PU, Manocha A, Vohora D. Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother. 2008;9:3169–77.

    Article  CAS  PubMed  Google Scholar 

  28. Brines ML, Sundaresan S, Spencer DD, de Lanerolle NC. Quantitative autoradiographic analysis of ionotropic glutamate receptor subtypes in human temporal lobe epilepsy: up-regulation in reorganized epileptogenic hippocampus. Eur J Neurosci. 1997;9:2035–44.

    Article  CAS  PubMed  Google Scholar 

  29. Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci. 2018;128:1086–96.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial temporal lobe epilepsy: Pathogenesis, induced rodent models and lesions. Toxicol Pathol. 2007;35:984–99.

    Article  PubMed  Google Scholar 

  31. Ramanjaneyulu R, Ticku MK. Interactions of pentamethylenetetrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine-GABA receptor-ionophore complex. Eur J Pharmacol. 1984;98:337–45.

    Article  CAS  PubMed  Google Scholar 

  32. Martin D, McNamara JO, Nadler JV. Kindling enhances sensitivity of CA3 hippocampal pyramidal cells to NMDA. J Neurosci. 1992;12:1928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo L, Jin Y, Kim ID, Lee JK. Glycyrrhizin suppresses HMGB1 inductions in the hippocampus and subsequent accumulation in serum of a kainic acid-induced seizure mouse model. Cell Mol Neurobiol. 2014;34:987–97.

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Li B, Zhu X, Yin P, Liu J, Huang S, et al. Neuroprotective effects of anti-high-mobility group box 1 antibody in juvenile rat hippocampus after kainic acid-induced status epilepticus. Neuroreport. 2013;24:785–90.

    Article  CAS  PubMed  Google Scholar 

  35. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16:413–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fu L, Liu K, Wake H, Teshigawara K, Yoshino T, Takahashi H, et al. Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep. 2017;7:1179.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med. 2011;270:319–26.

    Article  CAS  PubMed  Google Scholar 

  38. Nass RD, Wagner M, Surges R, Holdenrieder S. Time courses of HMGB1 and other inflammatory markers after generalized convulsive seizures. Epilepsy Res. 2020;162:106301.

    Article  CAS  PubMed  Google Scholar 

  39. Ruhnau J, Tennigkeit J, Ceesay S, Koppe C, Muszelewski M, Grothe S, et al. Immune alterations following neurological disorders: a comparison of stroke and seizures. Front Neurol. 2020;11:425.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Akahoshi N, Murashima YL, Himi T, Ishizaki Y, Ishii I. Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures. Neurosci Lett. 2007;429:136–41.

    Article  CAS  PubMed  Google Scholar 

  41. Banerjee M, Sasse VA, Wang Y, Maulik M, Kar S. Increased levels and activity of cathepsins B and D in kainate-induced toxicity. Neuroscience. 2015;284:360–73.

    Article  CAS  PubMed  Google Scholar 

  42. Wan Y, Feng B, You Y, Yu J, Xu C, Dai H, et al. Microglial displacement of GABAergic synapses is a protective event during complex febrile seizures. Cell Rep. 2020;33:108346.

    Article  CAS  PubMed  Google Scholar 

  43. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–84.

    Article  CAS  PubMed  Google Scholar 

  44. Hiragi T, Ikegaya Y, Koyama R. Microglia after seizures and in epilepsy. Cells. 2018;7:26.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Di Nunzio M, Di Sapia R, Sorrentino D, Kebede V, Cerovic M, Gullotta GS, et al. Microglia proliferation plays distinct roles in acquired epilepsy depending on disease stages. Epilepsia. 2021;62:1931–45.

    Article  PubMed  Google Scholar 

  46. Andoh M, Ikegaya Y, Koyama R. Synaptic pruning by microglia in epilepsy. J Clin Med. 2019;8:2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosciszewski G, Cadena V, Auzmendi J, Cieri MB, Lukin J, Rossi AR, et al. Detrimental effects of HMGB-1 require microglial-astroglial interaction: implications for the status epilepticus-induced neuroinflammation. Front Cell Neurosci. 2019;13:380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi Y, Zhang L, Teng J, Miao W. HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy. Mol Med Rep. 2018;17:5125–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, et al. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience. 2015;287:144–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Key R&D program of China (2021ZD0202803 and 2020YFA0803902), the National Natural Science Foundation of China (82022071), and the Natural Science Foundation of Zhejiang Province (LD22H310003).

Author information

Authors and Affiliations

Authors

Contributions

ZC, YW, and SBP designed the research. SJD, YYS, MQY, and XYQ conducted the experiments. SJD, YZ, and YW conducted the data analysis. YZ, JYSun, ZSL, JYShi, CLX, WSC, SY, SBP, MN, YW, and ZC provided technical guidance and contributed to the data discussion. SJD, YYS, YZ, and YW wrote the manuscript. YW and ZC supervised all aspects of the work.

Corresponding authors

Correspondence to Yi Wang or Zhong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Sj., Shao, Yy., Zheng, Y. et al. Inflachromene attenuates seizure severity in mouse epilepsy models via inhibiting HMGB1 translocation. Acta Pharmacol Sin 44, 1737–1747 (2023). https://doi.org/10.1038/s41401-023-01087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01087-6

Keywords

Search

Quick links