Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs

Abstract

Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1β and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification.

TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TCF21 was positively correlated with vascular calcification.
Fig. 2: TCF21 promotes HASMC osteogenesis.
Fig. 3: TCF21 enhances media calcification in the thoracic aorta ex vivo.
Fig. 4: SRF abolishes TCF21-induced calcification.
Fig. 5: TCF21 activates the IL-6-STAT3 signaling pathway.
Fig. 6: TCF21 promotes calcification through ECs and VSMCs interactions.

Similar content being viewed by others

Data availability

All data shown are available in the paper and the supporting information.

References

  1. Li Y, Pan Y, Wang L, Wang X, Chu H, Li Y, et al. 3-Arylcoumarin inhibits vascular calcification by inhibiting the generation of AGEs and anti-oxidative stress. J Enzym Inhib Med Chem. 2022;37:2147–57.

    Article  CAS  Google Scholar 

  2. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34:724–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van den Bergh G, Opdebeeck B, D’Haese PC, Verhulst A. The vicious cycle of arterial stiffness and arterial media calcification. Trends Mol Med. 2019;25:1133–46.

    Article  PubMed  Google Scholar 

  4. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci USA. 2013;110:10741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakraborty R, Saddouk FZ, Carrao AC, Krause DS, Greif DM, Martin KA. Promoters to study vascular smooth muscle. Arterioscler Thromb Vasc Biol. 2019;39:603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation. 2000;102:126–40.

    Article  PubMed  Google Scholar 

  7. Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest. 2016;126:1323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buendia P, Montes de Oca A, Madueno JA, Merino A, Martin-Malo A, Aljama P, et al. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J. 2015;29:173–81.

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Xie Y, Salvador AM, Zhang Z, Chen K, Li G, et al. Exosomes: multifaceted messengers in atherosclerosis. Curr Atheroscler Rep. 2020;22:57.

    Article  CAS  PubMed  Google Scholar 

  10. Xue C, Senchanthisai S, Sowden M, Pang J, White RJ, Berk BC. Endothelial-to-mesenchymal transition and inflammation play key roles in cyclophilin a-induced pulmonary arterial hypertension. Hypertension. 2020;76:1113–23.

    Article  CAS  PubMed  Google Scholar 

  11. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139:2139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hidai H, Bardales R, Goodwin R, Quertermous T, Quertermous EE. Cloning of capsulin, a basic helix-loop-helix factor expressed in progenitor cells of the pericardium and the coronary arteries. Mech Dev. 1998;73:33–43.

    Article  CAS  PubMed  Google Scholar 

  14. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999;126:5771–83.

    Article  CAS  PubMed  Google Scholar 

  15. Lu J, Chang P, Richardson JA, Gan L, Weiler H, Olson EN. The basic helix-loop-helix transcription factor capsulin controls spleen organogenesis. Proc Natl Acad Sci USA. 2000;97:9525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25:1280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagao M, Lyu Q, Zhao Q, Wirka RC, Bagga J, Nguyen T, et al. Coronary disease-associated gene TCF21 inhibits smooth muscle cell differentiation by blocking the myocardin-serum response factor pathway. Circ Res. 2020;126:517–29.

    Article  CAS  PubMed  Google Scholar 

  18. Nurnberg ST, Cheng K, Raiesdana A, Kundu R, Miller CL, Kim JB, et al. Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap. Genom Data. 2015;5:36–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br J Pharmacol. 2020;177:3617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng P, Yang J, Liu L, Yang X, Yao Z, Ma C, et al. ERK1/2 inhibition reduces vascular calcification by activating miR-126-3p-DKK1/LRP6 pathway. Theranostics. 2021;11:1129–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu L, Zeng P, Yang X, Duan Y, Zhang W, Ma C, et al. Inhibition of vascular calcification: a new antiatherogenic mechanism of Topo II (DNA Topoisomerase II) inhibitors. Arterioscler Thromb Vasc Biol. 2018;38:2382–95.

    Article  CAS  PubMed  Google Scholar 

  22. Liang Y, Han H, Liu L, Duan Y, Yang X, Ma C, et al. CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells. Oncogenesis. 2018;7:98.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, et al. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2015;35:948–59.

    Article  CAS  PubMed  Google Scholar 

  24. Yang W, He R, Qu H, Lian W, Xue Y, Wang T, et al. FXYD3 enhances IL-17A signaling to promote psoriasis by competitively binding TRAF3 in keratinocytes. Cell Mol Immunol. 2023;20:292–304.

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Duan Y, Kang Y, Yang X, Jiang M, Zhang L, et al. Activation of liver X receptor induces macrophage interleukin-5 expression. J Biol Chem. 2012;287:43340–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hruska KA, Saab G, Mathew S, Lund R. Renal osteodystrophy, phosphate homeostasis, and vascular calcification. Semin Dial. 2007;20:309–15.

    Article  PubMed  Google Scholar 

  27. Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ Jr. et al. Defining the mammalian CArGome. Genome Res. 2006;16:197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie Y, Martin KA. TCF21: Flipping the phenotypic switch in SMC. Circ Res. 2020;126:530–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116:2841–50.

    Article  CAS  PubMed  Google Scholar 

  30. Kim JB, Pjanic M, Nguyen T, Miller CL, Iyer D, Liu B, et al. TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells. PLoS Genet. 2017;13:e1006750.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Farrar DJ, Bond MG, Riley WA, Sawyer JK. Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys. Circulation. 1991;83:1754–63.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 2006;99:1044–59.

    Article  CAS  PubMed  Google Scholar 

  33. Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, et al. Medial vascular calcification revisited: review and perspectives. Eur Heart J. 2014;35:1515–25.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114:590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Voelkl J, Luong TT, Tuffaha R, Musculus K, Auer T, Lian X, et al. SGK1 induces vascular smooth muscle cell calcification through NF-kappaB signaling. J Clin Invest. 2018;128:3024–40.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang G, Yu C, Xiang K, Gao M, Liu Z, Yang B, et al. Inhibition of ANXA2 regulated by SRF attenuates the development of severe acute pancreatitis by inhibiting the NF-kappaB signaling pathway. Inflamm Res. 2022;71:1067–78.

    Article  CAS  PubMed  Google Scholar 

  37. Niu Z, Li A, Zhang SX, Schwartz RJ. Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol. 2007;19:618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galmiche G, Labat C, Mericskay M, Aissa KA, Blanc J, Retailleau K, et al. Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice. Circ Res. 2013;112:1035–45.

    Article  CAS  PubMed  Google Scholar 

  39. Miano JM. Role of serum response factor in the pathogenesis of disease. Lab Invest. 2010;90:1274–84.

    Article  CAS  PubMed  Google Scholar 

  40. Abdelbaky A, Corsini E, Figueroa AL, Fontanez S, Subramanian S, Ferencik M, et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ Cardiovasc Imaging. 2013;6:747–54.

    Article  PubMed  Google Scholar 

  41. Shao JS, Cheng SL, Sadhu J, Towler DA. Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension. 2010;55:579–92.

    Article  CAS  PubMed  Google Scholar 

  42. Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, Lopez-Ongil S, et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res. 2009;104:1041–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kurozumi A, Nakano K, Yamagata K, Okada Y, Nakayamada S, Tanaka Y. IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through JMJD2B-mediated histone demethylation of RUNX2. Bone. 2019;124:53–61.

    Article  CAS  PubMed  Google Scholar 

  44. Hao N, Zhou Z, Zhang F, Li Y, Hu R, Zou J, et al. Interleukin-29 Accelerates vascular calcification via JAK2/STAT3/BMP2 signaling. J Am Heart Assoc. 2023;12:e027222.

    Article  PubMed  Google Scholar 

  45. Fukuyo S, Yamaoka K, Sonomoto K, Oshita K, Okada Y, Saito K, et al. IL-6-accelerated calcification by induction of ROR2 in human adipose tissue-derived mesenchymal stem cells is STAT3 dependent. Rheumatology (Oxf). 2014;53:1282–90.

    Article  CAS  Google Scholar 

  46. Dai X, Thiagarajan D, Fang J, Shen J, Annam NP, Yang Z, et al. SM22alpha suppresses cytokine-induced inflammation and the transcription of NF-kappaB inducing kinase (Nik) by modulating SRF transcriptional activity in vascular smooth muscle cells. PLoS One. 2017;12:e0190191.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lum H, Malik AB. Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol. 1996;74:787–800.

    CAS  PubMed  Google Scholar 

  48. Yao Y, Jumabay M, Ly A, Radparvar M, Cubberly MR, Bostrom KI. A role for the endothelium in vascular calcification. Circ Res. 2013;113:495–504.

    Article  CAS  PubMed  Google Scholar 

  49. Yao J, Guihard PJ, Blazquez-Medela AM, Guo Y, Moon JH, Jumabay M, et al. Serine protease activation essential for endothelial-mesenchymal transition in vascular calcification. Circ Res. 2015;117:758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanchez-Duffhues G, Garcia de Vinuesa A, Ten Dijke P. Endothelial-to-mesenchymal transition in cardiovascular diseases: Developmental signaling pathways gone awry. Dev Dyn. 2018;247:492–508.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang YX, Tang RN, Wang LT, Liu BC. Role of crosstalk between endothelial cells and smooth muscle cells in vascular calcification in chronic kidney disease. Cell Prolif. 2021;54:e12980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med. 2022;9:895005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) Grants U22A20272 to YLC and YJD, 82160094 to MXJ; Natural Science Foundation of Anhui province 2208085MH196 to BCZ.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YLC and HH; methodology and investigation, XKZ, MMZ, SNW, TTZ, XNW, CYW, JZ, WYZ, XY, BCZ, and MXJ; resources: SWX; writing—original draft preparation, XKZ and YLC; writing—review and editing, YLC, SWX, YJD, JHH, QRM, and HH; supervision, YLC; funding acquisition, YLC, JHH, MXJ, and BCZ. All authors have read and agreed to the final version of the paper.

Corresponding authors

Correspondence to Hao Hu or Yuan-li Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Xk., Zhu, Mm., Wang, Sn. et al. Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs. Acta Pharmacol Sin 44, 1625–1636 (2023). https://doi.org/10.1038/s41401-023-01077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01077-8

Keywords

Search

Quick links