Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery of novel MIF inhibitors that attenuate microglial inflammatory activation by structures-based virtual screening and in vitro bioassays

Abstract

Macrophage migration inhibitory factor (MIF) is a pluripotent pro-inflammatory cytokine and is related to acute and chronic inflammatory responses, immune disorders, tumors, and other diseases. In this study, an integrated virtual screening strategy and bioassays were used to search for potent MIF inhibitors. Twelve compounds with better bioactivity than the prototypical MIF-inhibitor ISO-1 (IC50 = 14.41 μM) were identified by an in vitro enzymatic activity assay. Structural analysis revealed that these inhibitors have novel structural scaffolds. Compound 11 was then chosen for further characterization in vitro, and it exhibited marked anti-inflammatory efficacy in LPS-activated BV-2 microglial cells by suppressing the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs). Our findings suggest that MIF may be involved in the regulation of microglial inflammatory activation and that small-molecule MIF inhibitors may serve as promising therapeutic agents for neuroinflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of virtual screening.
Fig. 2: Chemical structures of compounds.
Fig. 3: The 3D presentation of the interactions.
Fig. 4: Effects of the compounds on the production of NO, cell viability, protein levels of iNOS, and COX-2 in LPS-primed BV-2 microglial cells.
Fig. 5: Effects of compounds 5, 9, 11, and 12 on the production of NO and the mRNA expression of pro-inflammatory factors in glial cells.
Fig. 6: The anti-inflammatory effects of MIF tautomerase inhibitors were dependent on MIF expression.
Fig. 7: Competitive inhibition pattern and the inhibition of MIF-mediated abrogation of glucocorticoid activity by compound 11.
Fig. 8: Effects of compound 11 on the generation of pro-inflammatory factors in LPS-primed BV-2 microglial cells.
Fig. 9: Compound 11 inhibits LPS-induced BV-2 microglial cells activation via NF-κB and MAPK signaling.
Fig. 10: Neuroprotective effect of compound 11 on CM from a microglia/neuroblastoma co-culture model.

References

  1. Amor S, Peferoen LAN, Vogel DYS, Breur M, Der Valk PV, Baker D, et al. Inflammation in neurodegenerative diseases- an update. Immunology. 2014;142:151–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Block ML, Zecca L, Hong J. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.

    Article  CAS  PubMed  Google Scholar 

  3. Dong XH, Zhen XC. Glial pathology in bipolar disorder: potential therapeutic implications. Neurosci Ther. 2015;21:393–7.

    Article  Google Scholar 

  4. Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6:193–201.

    Article  PubMed  Google Scholar 

  5. Xu L, Li Y, Sun H, Zhen X, Qiao C, Tian S, et al. Current developments of macrophage migration inhibitory factor (MIF) inhibitors. Drug Discov Today. 2013;18:592–600.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Li L, Wang J, An L, Hu X, Xie J, et al. Expression of macrophage migration inhibitory factor in the mouse neocortex and posterior piriform cortices during postnatal development. Cell Mol Neurobiol. 2014;34:1183–97.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Gu R, Jia J, Hou T, Zheng LT, Zhen X. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity suppresses microglia-mediated inflammatory responses. Clin Exp Pharmacol Physiol. 2016;43:1134–44.

    Article  CAS  PubMed  Google Scholar 

  8. Zis O, Zhang S, Dorovini-Zis K, Wang L, Song W. Hypoxia signaling regulates macrophage migration inhibitory factor (MIF) expression in stroke. Mol Neurobiol. 2015;51:155–67.

    Article  CAS  PubMed  Google Scholar 

  9. Benedek G, Meza-Romero R, Jordan K, Zhang Y, Nguyen H, Kent G, et al. MIF and D-DT are potential disease severity modifiers in male MS subjects. Proc Natl Acad Sci USA. 2017;114:E8421–E9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang S, Zhao J, Zhang Y, Zhang Y, Cai F, Wang L, et al. Upregulation of MIF as a defense mechanism and a biomarker of Alzheimer’s disease. Alzheimers Res Ther. 2019;11:1–12.

    Article  Google Scholar 

  11. Nicoletti A, Fagone P, Donzuso G, Mangano K, Dibilio V, Caponnetto S, et al. Parkinson’s disease is associated with increased serum levels of macrophage migration inhibitory factor. Cytokine. 2011;55:165–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sugimoto H, Taniguchi M, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 Å resolution. Biochemistry. 1999;38:3268–79.

    Article  CAS  PubMed  Google Scholar 

  13. Rosengren E, Åman P, Thelin S, Hansson C, Ahlfors S, Björk P, et al. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett. 1997;417:85–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, et al. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol. 1998;280:85–102.

    Article  CAS  PubMed  Google Scholar 

  15. Gunther S, Fagone P, Jalce G, Atanasov AG, Guignabert C, Nicoletti F. Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov Today. 2019;24:428–39.

    Article  CAS  PubMed  Google Scholar 

  16. Garai J, Lorand T. Macrophage migration inhibitory factor (MIF) tautomerase inhibitors as potential novel anti-inflammatory agents: current developments. Curr Med Chem. 2009;16:1091–114.

    Article  CAS  PubMed  Google Scholar 

  17. Trivediparmar V, Jorgensen WL. Advances and insights for small molecule inhibition of macrophage migration inhibitory factor. J Med Chem. 2018;61:8104–19.

    Article  CAS  Google Scholar 

  18. Kok T, Wasiel AA, Cool RH, Melgert BN, Poelarends GJ, Dekker FJ. Small-molecule inhibitors of macrophage migration inhibitory factor (MIF) as an emerging class of therapeutics for immune disorders. Drug Discov Today. 2018;23:1910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cisneros JA, Robertson MJ, Valhondo M, Jorgensen WL. A fluorescence polarization assay for binding to macrophage migration inhibitory factor and crystal structures for somplexes of two potent inhibitors. J Am Chem Soc. 2016;138:8630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanrikulu Y, Kruger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today. 2013;18:358–64.

    Article  PubMed  Google Scholar 

  21. Tian S, Sun H, Li Y, Pan P, Li D, Hou T. Development and eEvaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures. J Chem Inf Model. 2013;53:2743–56.

    Article  CAS  PubMed  Google Scholar 

  22. Tian S, Sun H, Pan P, Li D, Zhen X, Li Y, et al. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility. J Chem Inf Model. 2014;54:2664–79.

    Article  CAS  PubMed  Google Scholar 

  23. Berman HM, Westbrook JD, Feng Z, Gilliland GL, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007;35:198–201.

    Article  Google Scholar 

  26. Kaminski GA, Friesner RA, Rives JT, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B. 2001;105:6474–87.

    Article  CAS  Google Scholar 

  27. Soares TA, Goodsell DS, Ferreira R, Olson AJ, Briggs JM. Ionization state and molecular docking studies for the macrophage migration inhibitory factor: the role of lysine 32 in the catalytic mechanism. J Mol Recognit. 2000;13:146–56.

    Article  CAS  PubMed  Google Scholar 

  28. Maestro, version 10.3 (Schrödinger, LLC, New York, NY, 2015).

  29. Tian S, Wang X, Li L, Zhang X, Li Y, Zhu F, et al. Discovery of novel and selective adenosine A2A receptor antagonists for treating parkinson’s disease through comparative structure-based virtual screening. J Chem Inf Model. 2017;57:1474–87.

    Article  CAS  PubMed  Google Scholar 

  30. Walters WP, Stahl MT, Murcko MA. Virtual screening: an overview. Drug Discov Today. 1998;3:160–78.

    Article  CAS  Google Scholar 

  31. Xu L, Zhang Y, Zheng LT, Qiao C, Li Y, Li D, et al. Discovery of novel inhibitors targeting the macrophage migration inhibitory factor via structure-based virtual screening and bioassays. J Med Chem. 2014;57:3737–45.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Xu L, Zhang Z, Zhang Z, Zheng LT, Li D, et al. Structure-activity relationships and anti-inflammatory activities of N-carbamothioylformamide analogues as MIF tautomerase inhibitors. J Chem Inf Model. 2015;55:1994–2004.

    Article  CAS  PubMed  Google Scholar 

  33. Han CJ, Zheng JY, Sun L, Yang HC, Cao ZQ, Zhang XH, et al. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-kappaB pathway. Acta Pharmacol Sin. 2019;40:1292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tao L, Zhang F, Hao L, Wu J, Jia J, Liu JY, et al. 1-O-tigloyl-1-O-deacetyl-nimbolinin B inhibits LPS-stimulated inflammatory responses by suppressing NF-kappaB and JNK activation in microglia cells. J Pharm Sci. 2014;125:364–74.

    Article  CAS  Google Scholar 

  35. Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W, Loo JA, et al. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol Biol. 2015;1263:287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo CH, Cao T, Zheng LT, Waddington JL, Zhen XC. Development and characterization of an inducible Dicer conditional knockout mouse model of Parkinson’s disease: validation of the antiparkinsonian effects of a sigma-1 receptor agonist and dihydromyricetin. Acta Pharmacol Sin. 2020;41:499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu ZX, Wu J, Zheng JY, Ma HK, Zhang HJ, et al. Design, synthesis and evaluation of a series of non-steroidal anti-inflammatory drug conjugates as novel neuroinflammatory inhibitors. Int Immunopharmacol. 2015;25:528–37.

    Article  CAS  PubMed  Google Scholar 

  38. Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry. 1999;38:7346–54.

    Article  CAS  PubMed  Google Scholar 

  39. Crichlow GV, Cheng KF, Dabideen D, Ochani M, Aljabari B, Pavlov VA, et al. Alternative chemical modifications reverse the binding orientation of a pharmacophore scaffold in the active site of macrophage migration inhibitory factor. J Biol Chem. 2007;282:23089–95.

    Article  CAS  PubMed  Google Scholar 

  40. Winner M, Meier J, Zierow S, Rendon BE, Crichlow GV, Riggs R, et al. A novel, macrophage migration inhibitory factor suicide substrate inhibits motility and growth of lung cancer cells. Cancer Res. 2008;68:7253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crichlow GV, Lubetsky JB, Leng L, Bucala R, Lolis EJ. Structural and kinetic analyses of macrophage migration inhibitory factor active site interactions. Biochemistry. 2009;48:132–9.

    Article  CAS  PubMed  Google Scholar 

  42. Cho Y, Crichlow GV, Vermeire JJ, Leng L, Du X, Hodsdon ME, et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc Natl Acad Sci USA. 2010;107:11313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mclean LR, Zhang Y, Li H, Li Z, Lukasczyk U, Choi Y, et al. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening. Bioorg Med Chem Lett. 2009;19:6717–20.

    Article  CAS  PubMed  Google Scholar 

  44. Crichlow GV, Fan C, Keeler C, Hodsdon ME, Lolis E. Structural interactions dictate the kinetics of macrophage migration inhibitory factor inhibition by different cancer-preventive isothiocyanates. Biochemistry. 2012;51:7506–14.

    Article  CAS  PubMed  Google Scholar 

  45. Tyndall JDA, Lue H, Rutledge MT, Bernhagen J, Hampton MB, Wilbanks SM. Macrophage migration inhibitory factor covalently complexed with phenethyl isothiocyanate. Acta Crystallogr. 2012;68:999–1002.

    CAS  Google Scholar 

  46. Schneider G. Virtual screening: an endless staircase? Nat Rev Drug Discov. 2010;9:273–6.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou W, Duan M, Fu W, Pang J, Tang Q, Sun H, et al. Discovery of novel androgen receptor ligands by structure-based virtual screening and bioassays. Genomics Proteomics Bioinformatics. 2018;16:416–27.

    Article  PubMed  Google Scholar 

  48. Dahlgren MK, Garcia AB, Hare AA, Tiradorives J, Leng L, Bucala R, et al. Virtual screening and optimization yield low-nanomolar inhibitors of the tautomerase sctivity of Plasmodium falciparum macrophage migration inhibitory factor. J Med Chem. 2012;55:10148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Orita M, Yamamoto S, Katayama N, Aoki M, Takayama K, Yamagiwa Y, et al. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J Med Chem. 2001;44:540–7.

    Article  CAS  PubMed  Google Scholar 

  50. Dabideen D, Cheng KF, Aljabari B, Miller EJ, Pavlov VA, Alabed Y. Phenolic hydrazones are potent inhibitors of macrophage migration inhibitory factor proinflammatory activity and survival improving agents in sepsis. J Med Chem. 2007;50:1993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cisneros JA, Robertson MJ, Valhondo M, Jorgensen WL. Irregularities in enzyme assays: The case of macrophage migration inhibitory factor. Bioorg Med Chem Lett. 2016;26:2764–7.

    Article  CAS  PubMed  Google Scholar 

  52. Senter PD, Al-Abed Y, Metz CN, Benigni F, Mitchell RA, Chesney J, et al. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase and biological activities by acetaminophen metabolites. Proc Natl Acad Sci USA. 2002;99:144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Calandra T, Bernhagen J, Mitchell RA, Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med. 1994;179:1895–902.

    Article  CAS  PubMed  Google Scholar 

  54. Calandra T, Bucala R. Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit Rev Immunol. 1997;17:77–88.

    Article  CAS  PubMed  Google Scholar 

  55. Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets. 2016;20:1463–75.

    Article  CAS  PubMed  Google Scholar 

  56. Lubetsky JB, Dios A, Han J, Aljabari B, Ruzsicska B, Mitchell R, et al. The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. J Biol Chem. 2002;277:24976–82.

    Article  CAS  PubMed  Google Scholar 

  57. Al-Abed Y, Dabideen D, Aljabari B, Valster A, Messmer D, Ochani M, et al. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem. 2005;280:36541–4.

    Article  CAS  PubMed  Google Scholar 

  58. Stollg G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol. 1999;58:233–47.

    Article  Google Scholar 

  59. Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87:10–20.

    Article  CAS  PubMed  Google Scholar 

  60. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, et al. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett. 2015;584:191–6.

    Article  CAS  PubMed  Google Scholar 

  62. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7:354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu XL, Lin J, Lu XY, Feng JH, Zhang XQ, Wang H, et al. Synthesis and biological evaluation of clovamide analogues as potent anti-neuroinflammatory agents in vitro and in vivo. Eur J Med Chem. 2018;151:261–71.

    Article  CAS  PubMed  Google Scholar 

  64. He P, Yan S, Zheng J, Gao Y, Zhang S, Liu Z, et al. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells. J Agric Food Chem. 2018;66:10205–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81703496, 81973334, 31970909, 21173156, 81803430, 81773702, and 81373382), Natural Science Foundation of Hubei Province (2020CFB543), and Natural Science Foundation of Jiangsu Province (BE2019650) and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD), National Center for International Research (2017B01012), and Inner Mongolia Natural Science Foundation (2019MS08197).

Author information

Authors and Affiliations

Authors

Contributions

LTZ, XCZ, and TJH designed the research. Yu Zhang, LX, and Yao Zhang designed the experiments. Yu Zhang, LX, and Yao Zhang conducted virtual screening and biological assays. JP, PQW, ST, HTL, and BWG helped to perform part of biological assays. Yu Zhang, LX, Yao Zhang, LTZ, XCZ, and TJH wrote the manuscript.

Corresponding authors

Correspondence to Ting-jun Hou, Xue-chu Zhen or Long-Tai Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, L., Zhang, Y. et al. Discovery of novel MIF inhibitors that attenuate microglial inflammatory activation by structures-based virtual screening and in vitro bioassays. Acta Pharmacol Sin 43, 1508–1520 (2022). https://doi.org/10.1038/s41401-021-00753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-021-00753-x

Keywords

  • macrophage migration inhibitory factor
  • virtual screening
  • tautomerase assay
  • naive Bayesian classification
  • neuroinflammation

Search

Quick links