Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes

Abstract

Baicalein is a natural flavonoid extracted from the root of Scutellaria baicalensis that exhibits a variety of pharmacological activities. In this study, we investigated the molecular mechanisms underlying the protective effect of baicalein against cardiac hypertrophy in vivo and in vitro. Cardiac hypertrophy was induced in mice by injection of isoproterenol (ISO, 30 mg·kg−1·d−1) for 15 days. The mice received caudal vein injection of baicalein (25 mg/kg) on 3rd, 6th, 9th, 12th, and 15th days. We showed that baicalein administration significantly attenuated ISO-induced cardiac hypertrophy and restored cardiac function. The protective effect of baicalein against cardiac hypertrophy was also observed in neonatal rat cardiomyocytes treated with ISO (10 μM). In cardiomyocytes, ISO treatment markedly increased reactive oxygen species (ROS) and inhibited autophagy, which were greatly alleviated by pretreatment with baicalein (30 μM). We found that baicalein pretreatment increased the expression of catalase and the mitophagy receptor FUN14 domain containing 1 (FUNDC1) to clear ROS and promote autophagy, thus attenuated ISO-induced cardiac hypertrophy. Furthermore, we revealed that baicalein bound to the transcription factor FOXO3a directly, promoting its transcription activity, and transactivated catalase and FUNDC1. In summary, our data provide new evidence for baicalein and FOXO3a in the regulation of ISO-induced cardiac hypertrophy. Baicalein has great potential for the treatment of cardiac hypertrophy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Baicalein attenuated ISO-induced cardiac hypertrophy in vivo.
Fig. 2: Baicalein attenuated ISO-induced cardiac hypertrophy in vitro.
Fig. 3: Baicalein prevented ISO-induced ROS burst via catalase.
Fig. 4: Baicalein activated autophagy via FUNDC1.
Fig. 5: FUNDC1 inhibited ISO-induced cardiac hypertrophy.
Fig. 6: Baicalein targeted FOXO3a to attenuate ISO-induced cardiac hypertrophy.
Fig. 7: FOXO3a prevented ISO-induced ROS production via catalase.
Fig. 8: FOXO3a transactivated FUNDC1 to activate autophagy, which inhibited ISO-induced cardiac hypertrophy.

References

  1. 1.

    Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128:191–227.

    CAS  PubMed  Google Scholar 

  2. 2.

    Li Z, Wang J, Yang X. Functions of autophagy in pathological cardiac hypertrophy. Int J Biol Sci. 2015;11:672–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407.

    CAS  PubMed  Google Scholar 

  4. 4.

    Xu FP, Chen MS, Wang YZ, Yi Q, Lin SB, Chen AF, et al. Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. Circulation 2004;110:1269–75.

    CAS  PubMed  Google Scholar 

  5. 5.

    Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed Res Int. 2014;2014:608979.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fandy TE, Jiemjit A, Thakar M, Rhoden P, Suarez L, Gore SD. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes. Clin Cancer Res. 2014;20:1249–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ureshino RP, Rocha KK, Lopes GS, Bincoletto C, Smaili SS. Calcium signaling alterations, oxidative stress, and autophagy in aging. Antioxid Redox Signal. 2014;21:123–37.

    CAS  PubMed  Google Scholar 

  8. 8.

    Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73.

    CAS  PubMed  Google Scholar 

  9. 9.

    Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

    CAS  PubMed  Google Scholar 

  10. 10.

    Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol. 2004;14:70–77.

    Google Scholar 

  11. 11.

    Liu C, Xue R, Wu D, Wu L, Chen C, Tan W, et al. REDD1 attenuates cardiac hypertrophy via enhancing autophagy. Biochem Biophys Res Commun. 2014;454:215–20.

    CAS  PubMed  Google Scholar 

  12. 12.

    Xue R, Zeng J, Chen Y, Chen C, Tan W, Zhao J, et al. Sestrin 1 ameliorates cardiac hypertrophy via autophagy activation. J Cell Mol Med. 2017;21:1193–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Yang J, Xu J, Han X, Wang H, Zhang Y, Dong J, et al. Lysophosphatidic acid is associated with cardiac dysfunction and hypertrophy by suppressing autophagy via the LPA3/AKT/mTOR pathway. Front Physiol. 2018;9:1315.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yang K, Long Q. Knockout of the ATPase inhibitory factor 1 protects the heart from pressure overload-induced cardiac hypertrophy. Sci Rep. 2017;7:10501.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Xiong W, Hua J, Liu Z, Cai W, Bai Y, Zhan Q, et al. PTEN induced putative kinase 1 (PINK1) alleviates angiotensin II-induced cardiac injury by ameliorating mitochondrial dysfunction. Int J Cardiol. 2018;266:198–205.

    PubMed  Google Scholar 

  16. 16.

    D’Amico R, Fusco R, Gugliandolo E, Cordaro M, Siracusa R, Impellizzeri D, et al. Effects of a new compound containing palmitoylethanolamide and baicalein in myocardial ischaemia/reperfusion injury in vivo. Phytomedicine. 2019;54:27–42.

    PubMed  Google Scholar 

  17. 17.

    Liu R, Zhang HB, Yang J, Wang JR, Liu JX, Li CL. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur Rev Med Pharmacol Sci. 2018;22:7500–8.

    CAS  PubMed  Google Scholar 

  18. 18.

    Tsou LK, LaraTejero M, RoseFigura J, Zhang ZJ, Wang YC, Yount JS, et al. Antibacterial flavonoids from medicinal plants covalently inactivate type III protein secretion substrates. J Am Chem Soc. 2016;138:2209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chen H, Gao Y, Wu J, Chen Y, Chen B, Hu J, et al. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett. 2014;354:5–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Li Y, Chen Q, Ran D, Wang H, Du W, Luo Y, et al. Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein. Free Radic Biol Med. 2019;134:239–47.

    CAS  PubMed  Google Scholar 

  21. 21.

    Shi L, Hao Z, Zhang S, Wei M, Lu B, Wang Z, et al. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC. Biochem Pharmacol. 2018;150:9–23.

    CAS  PubMed  Google Scholar 

  22. 22.

    Dai C, Tang S, Wang Y, Velkov T, Xiao X. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response. J Antimicrob Chemother. 2017;72:2562–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wu R, Murali R, Kabe Y, French SW, Chiang YM, Liu S, et al. Baicalein targets GTPase-mediated autophagy to eliminate liver tumor-initiating stem cell-like cells resistant to mTORC1 inhibition. Hepatology. 2018;68:1726–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wang YF, Xu YL, Tang ZH, Li T, Zhang LL, Chen X, et al. Baicalein induces beclin 1- and extracellular signal-regulated kinase-dependent autophagy in ovarian cancer cells. Am J Chin Med. 2017;45:123–36.

    PubMed  Google Scholar 

  25. 25.

    Liu W, Wang X, Liu Z, Wang Y, Yin B, Yu P, et al. SGK1 inhibition induces autophagy-dependent apoptosis via the mTOR-Foxo3a pathway. Br J Cancer. 2017;117:1139–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang Y, Han E, Xing Q, Yan J, Arrington A, Wang C, et al. Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells. Cancer Lett. 2015;358:170–9.

    CAS  PubMed  Google Scholar 

  27. 27.

    Wang L, Ling Y, Chen Y, Li CL, Feng F, You QD, et al. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett. 2010;297:42–48.

    CAS  PubMed  Google Scholar 

  28. 28.

    Zong J, Zhang DP, Zhou H, Bian ZY, Deng W, Dai J, et al. Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling. J Cell Biochem. 2013;114:1058–65.

    CAS  PubMed  Google Scholar 

  29. 29.

    Wang AW, Song L, Miao J, Wang HX, Tian C, Jiang X, et al. Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-kappaB, and calcineurin signaling pathways in mice. Am J Hypertens. 2015;28:518–26.

    CAS  PubMed  Google Scholar 

  30. 30.

    Chen HM, Liou SF, Hsu JH, Chen TJ, Cheng TL, Chiu CC, et al. Baicalein inhibits HMGB1 release and MMP-2/-9 expression in lipopolysaccharide-induced cardiac hypertrophy. Am J Chin Med. 2014;42:785–97.

    CAS  PubMed  Google Scholar 

  31. 31.

    Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, et al. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKalpha and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. J Exp Clin Cancer Res. 2015;34:41.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Murtaza I, Wang HX, Feng X, Alenina N, Bader M, Prabhakar BS, et al. Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy. J Biol Chem. 2008;283:5996–6004.

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang K, Lin ZQ, Long B, Li JH, Zhou J, Li PF. Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem. 2012;287:589–99.

    CAS  PubMed  Google Scholar 

  35. 35.

    Wang JX, Li Q, Li PF. Apoptosis repressor with caspase recruitment domain contributes to chemotherapy resistance by abolishing mitochondrial fission mediated by dynamin-related protein-1. Cancer Res. 2009;69:492–500.

    CAS  PubMed  Google Scholar 

  36. 36.

    Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 2018;9:29.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37:2602–11.

    CAS  PubMed  Google Scholar 

  38. 38.

    Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. MiR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA. 2009;106:12103–8.

    CAS  PubMed  Google Scholar 

  39. 39.

    Cui G, Luk SC, Li RA, Chan KK, Lei SW, Wang L, et al. Cytoprotection of baicalein against oxidative stress-induced cardiomyocytes injury through the Nrf2/Keap1 pathway. J Cardiovasc Pharmacol. 2015;65:39–46.

    CAS  PubMed  Google Scholar 

  40. 40.

    Li J, Chang WT, Li CQ, Lee C, Huang HH, Hsu CW, et al. Baicalein preventive treatment confers optimal cardioprotection by PTEN/Akt/NO activation. Am J Chin Med. 2017;45:987–1001.

    CAS  PubMed  Google Scholar 

  41. 41.

    Chang WT, Li J, Haung HH, Liu H, Han M, Ramachandran S, et al. Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation. J Cell Biochem. 2011;112:2873–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Li Z, Song Y, Liu L, Hou N, An X, Zhan D, et al. MiR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ. 2017;24:1205–13.

    CAS  PubMed  Google Scholar 

  43. 43.

    Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619–24.

    CAS  PubMed  Google Scholar 

  44. 44.

    Simonson B, Subramanya V, Chan MC, Zhang A, Franchino H, Ottaviano F. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci Signal 2017;10:eaaf5967.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Zhang W, Siraj S, Zhang R, Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy. 2017;13:1080–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Li Y, Liu Z, Zhang Y, Zhao Q, Wang X, Lu P, et al. PEDF protects cardiomyocytes by promoting FUNDC1mediated mitophagy via PEDF-R under hypoxic condition. Int J Mol Med. 2018;41:3394–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Chen Y, Luo HQ, Sun LL, Xu MT, Yu J, Liu LL, et al. Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement. Int J Mol Sci. 2018;19:2592.

    PubMed Central  Google Scholar 

  48. 48.

    Tan WQ, Wang K, Lv DY, Li PF. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem. 2008;283:29730–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114:565–71.

    CAS  PubMed  Google Scholar 

  50. 50.

    Zhao F, Fu L, Yang W, Dong Y, Yang J, Sun S, et al. Cardioprotective effects of baicalein on heart failure via modulation of Ca2+ handling proteins in vivo and in vitro. Life Sci. 2016;145:213–23.

    PubMed  Google Scholar 

  51. 51.

    Huang HH, Shao ZH, Li CQ, Vanden Hoek TL, Li J. Baicalein protects cardiomyocytes against mitochondrial oxidant injury associated with JNK inhibition and mitochondrial Akt activation. Am J Chin Med. 2014;42:79–94.

    CAS  PubMed  Google Scholar 

  52. 52.

    Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol. 2016;40–41:48–81.

    PubMed  Google Scholar 

  53. 53.

    Nho RS, Hergert P. FoxO3a and disease progression. World J Biol Chem. 2014;5:346–54.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Quotti Tubi L, Canovas Nunes S, Brancalion A, Doriguzzi Breatta E, Manni S, Mandato E, et al. Protein kinase CK2 regulates AKT, NF-kappaB and STAT3 activation, stem cell viability and proliferation in acute myeloid leukemia. Leukemia. 2017;31:292–300.

    CAS  PubMed  Google Scholar 

  55. 55.

    Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis. 2016;7:e2111.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007;117:2133–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Guo L, Yin A, Zhang Q, Zhong T, O’Rourke ST, Sun C. Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Am J Physiol Heart Circ Physiol. 2017;312:H980–91.

    PubMed  Google Scholar 

  58. 58.

    Wang C, Xu W, Zhang Y, Zhang F, Huang K. PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis. 2018;9:1047.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Xiao Y, Yang Z, Wu QQ, Jiang XH, Yuan Y, Chang W, et al. Cucurbitacin B protects against pressure overload induced cardiac hypertrophy. J Cell Biochem. 2017;118:3899–910.

    CAS  PubMed  Google Scholar 

  60. 60.

    Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, et al. CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med. 2017;21:1492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Meng G, Liu J, Liu S, Song Q, Liu L, Xie L, et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol. 2018;175:1126–45.

    CAS  PubMed  Google Scholar 

  62. 62.

    Chen B, Wu Q, Xiong Z, Ma Y, Yu S, Chen D, et al. Adenosine monophosphate-activated protein kinase attenuates cardiomyocyte hypertrophy through regulation of FOXO3a/MAFbx signaling pathway. Acta Biochim Biophys Sin. 2016;48:827–32.

    CAS  PubMed  Google Scholar 

  63. 63.

    Hauck L, Harms C, Grothe D, An J, Gertz K, Kronenberg G, et al. Critical role for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to statin signaling in cardiac myocytes. Circ Res. 2007;100:50–60.

    CAS  PubMed  Google Scholar 

  64. 64.

    Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016;12:689–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14:177–85.

    Google Scholar 

  66. 66.

    Facundo H, Brainard RE, Caldas FRL, Lucas AMB. Mitochondria and cardiac hypertrophy. Adv Exp Med Biol. 2017;982:203–26.

    PubMed  Google Scholar 

  67. 67.

    Dai DF, Johnson SC, Villarin JJ, Chin MT, NievesCintron M, Chen T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108:837–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Yu W, Xu M, Zhang T, Zhang Q, Zou C. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci. 2019;69:113–27.

    CAS  PubMed  Google Scholar 

  69. 69.

    Weng LQ, Zhang WB, Ye Y, Yin PP, Yuan J, Wang XX, et al. Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice. Acta Pharmacol Sin. 2014;35:1005–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Yin X, Peng C, Ning W, Li C, Ren Z, Zhang J, et al. MiR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy. Mol Cell Biochem. 2013;379:1–6.

    CAS  PubMed  Google Scholar 

  71. 71.

    Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS ONE. 2013;8:e53950.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. JQ201815), the National Natural Science Foundation of China (No. 81770232), and grants from FuWai Hospital (No. 2019kf-03).

Author information

Affiliations

Authors

Contributions

JXW and LL designed the study. BYL performed the experiments with help from GLL, WD, TX, XYJ, XXZ, and JZ. GLL, WD and TX contributed to the animal experiments, cell experiments, and data analysis. XYJ and XXZ contributed to the animal experiments. JZ contributed to the data analysis. BYL wrote the final manuscript. JXW and WGC revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian-xun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, By., Li, L., Liu, Gl. et al. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin 42, 701–714 (2021). https://doi.org/10.1038/s41401-020-0496-1

Download citation

Keywords

  • baicalein
  • cardiac hypertrophy
  • isoproterenol
  • ROS
  • catalase
  • FUNDC1

Further reading

Search

Quick links