Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mzb1 protects against myocardial infarction injury in mice via modulating mitochondrial function and alleviating inflammation

Abstract

Myocardial infarction (MI) leads to the loss of cardiomyocytes, left ventricle dilation and cardiac dysfunction, eventually developing into heart failure. Mzb1 (Marginal zone B and B1 cell specific protein 1) is a B-cell-specific and endoplasmic reticulum-localized protein. Mzb1 is an inflammation-associated factor that participates a series of inflammatory processes, including chronic periodontitis and several cancers. In this study we investigated the role of Mzb1 in experimental models of MI. MI was induced in mice by ligation of the left descending anterior coronary artery, and in neonatal mouse ventricular cardiomyocytes (NMVCs) by H2O2 treatment in vitro. We showed that Mzb1 expression was markedly reduced in the border zone of the infarct myocardium of MI mice and in H2O2-treated NMVCs. In H2O2-treated cardiomyocytes, knockdown of Mzb1 decreased mitochondrial membrane potential, impaired mitochondrial function and promoted apoptosis. On contrary, overexpression of Mzb1 improved mitochondrial membrane potential, ATP levels and mitochondrial oxygen consumption rate (OCR), and inhibited apoptosis. Direct injection of lentiviral vector carrying Len-Mzb1 into the myocardial tissue significantly improved cardiac function and alleviated apoptosis in MI mice. We showed that Mzb1 overexpression significantly decreased the levels of Bax/Bcl-2 and cytochrome c and improved mitochondrial function in MI mice via activating the AMPK-PGC1α pathway. In addition, we demonstrated that Mzb1 recruited the macrophages and alleviated inflammation in MI mice. We conclude that Mzb1 is a crucial regulator of cardiomyocytes after MI by improving mitochondrial function and reducing inflammatory signaling pathways, implying a promising therapeutic target in ischemic cardiomyopathy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Downregulation of Mzb1 expression in a mouse model of myocardial infarction (MI) and a model of oxidative stress induced by H2O2 in cultured neonatal mouse ventricular myocytes (NMVCs).
Fig. 2: Mzb1 knockdown promoted apoptosis in cardiomyocytes.
Fig. 3: Effects of Mzb1 overexpression on apoptosis in NMVCs.
Fig. 4: Mzb1 knockdown aggravated the mitochondrial injury induced by H2O2.
Fig. 5: Mzb1 overexpression significantly improves mitochondrial function.
Fig. 6: Mzb1 overexpression suppresses cardiomyocyte apoptosis in MI mice.
Fig. 7: Mzb1 reduces inflammation and accumulates macrophages in MI mice.
Fig. 8: Schematic model describing the protective effect of Mzb1 in AMI. Injury of cardiomyocytes led to apoptosis and mitochondrial dysfunction, ROS release, and increased inflammation.

References

  1. 1.

    Elgendy IY, Mahtta D, Pepine CJ. Medical therapy for heart failure caused by ischemic heart disease. Circ Res. 2019;124:1520–35.

    CAS  Article  Google Scholar 

  2. 2.

    Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med. 2017;21:2643–53.

    Article  Google Scholar 

  3. 3.

    Frankenreiter S, Bednarczyk P, Kniess A, Bork NI, Straubinger J, Koprowski P, et al. cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation. 2017;136:2337–55.

    CAS  Article  Google Scholar 

  4. 4.

    Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14:133–44.

    CAS  Article  Google Scholar 

  5. 5.

    Rawat P, Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus Type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia. 2019;67:802–24.

    Article  Google Scholar 

  6. 6.

    Rosenbaum M, Andreani V, Kapoor T, Herp S, Flach H, Duchniewicz M, et al. MZB1 is a GRP94 cochaperone that enables proper immunoglobulin heavy chain biosynthesis upon ER stress. Genes Dev. 2014;28:1165–78.

    CAS  Article  Google Scholar 

  7. 7.

    Andreani V, Ramamoorthy S, Pandey A, Lupar E, Nutt SL, Lammermann T, et al. Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and beta1-integrin function. Proc Natl Acad Sci USA. 2018;115:E9630–9.

    CAS  Article  Google Scholar 

  8. 8.

    Miyagawa-Hayashino A, Yoshifuji H, Kitagori K, Ito S, Oku T, Hirayama Y, et al. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther. 2018;20:13.

    Article  Google Scholar 

  9. 9.

    Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y, et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res. 2019;66:e12542.

    Article  Google Scholar 

  10. 10.

    Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13:486–91.

    CAS  Article  Google Scholar 

  11. 11.

    Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, et al. MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol. 2014;173:268–76.

    Google Scholar 

  12. 12.

    Tai Y, Li L, Peng X, Zhu J, Mao X, Qin N, et al. Mitochondrial uncoupler BAM15 inhibits artery constriction and potently activates AMPK in vascular smooth muscle cells. Acta Pharm Sin B. 2018;8:909–18.

    Article  Google Scholar 

  13. 13.

    Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 2018;25:1080–93.

    CAS  Article  Google Scholar 

  14. 14.

    Kentner R, Safar P, Behringer W, Wu X, Kagan VE, Tyurina YY, et al. Early antioxidant therapy with Tempol during hemorrhagic shock increases survival in rats. J Trauma. 2002;53:968–77.

    CAS  Article  Google Scholar 

  15. 15.

    Penna C, Perrelli MG, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal. 2013;18:556–99.

    CAS  Article  Google Scholar 

  16. 16.

    Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipido. 2009;20:98–105.

    CAS  Article  Google Scholar 

  17. 17.

    Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18:488–98.

    CAS  Article  Google Scholar 

  18. 18.

    Kwon MJ, Shin HY, Cui Y, Kim H, Thi AH, Choi JY, et al. CCL2 Mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci. 2015;35:15934–47.

    CAS  Article  Google Scholar 

  19. 19.

    Lee PL, Jung SM, Guertin DA. The complex roles of mechanistic target of rapamycin in adipocytes and beyond. Trends Endocrinol Metab. 2017;28:319–39.

    CAS  Article  Google Scholar 

  20. 20.

    Belkaya S, Murray SE, Eitson JL, de la Morena MT, Forman JA, van Oers NS. Transgenic expression of microRNA-185 causes a developmental arrest of T cells by targeting multiple genes including Mzb1. J Biol Chem. 2013;288:30752–62.

    CAS  Article  Google Scholar 

  21. 21.

    Flach H, Rosenbaum M, Duchniewicz M, Kim S, Zhang SL, Cahalan MD, et al. Mzb1 protein regulates calcium homeostasis, antibody secretion, and integrin activation in innate-like B cells. Immunity. 2010;33:723–35.

    CAS  Article  Google Scholar 

  22. 22.

    Groenendyk J, Agellon LB, Michalak M. Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol. 2013;75:49–67.

    CAS  Article  Google Scholar 

  23. 23.

    Xu T, Ding W, Ao X, Chu X, Wan Q, Wang Y, et al. ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol. 2019;20:414–26.

    CAS  Article  Google Scholar 

  24. 24.

    Cooper HA, Eguchi S. Inhibition of mitochondrial fission as a novel therapeutic strategy to reduce mortality upon myocardial infarction. Clin Sci (Lond). 2018;132:2163–7.

    CAS  Article  Google Scholar 

  25. 25.

    Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, et al. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 2019;68:571–86.

    CAS  Article  Google Scholar 

  26. 26.

    Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, et al. Hyperglycemia-driven inhibition of AMP-activated protein kinase alpha2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 2019;139:1913–36.

    CAS  Article  Google Scholar 

  27. 27.

    Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20:267–84.

    CAS  Article  Google Scholar 

  28. 28.

    Rowland AA, Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol. 2012;13:607–25.

    CAS  Article  Google Scholar 

  29. 29.

    Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X, et al. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 2017;136:2248–66.

    CAS  Article  Google Scholar 

  30. 30.

    Li Q, Tursun D, Shi C, Heyrulla M, Zhang X, Yang W. Ziziphora clinopodioides flavonoids protect myocardial cell damage from myocardial ischemia-reperfusion injury. Evid Based Complement Altern Med. 2018;2018:8495010.

    Google Scholar 

  31. 31.

    Yang J, He J, Ismail M, Tweeten S, Zeng F, Gao L, et al. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol. 2019;130:36–48.

    CAS  Article  Google Scholar 

  32. 32.

    Butterick TA, Hocum Stone L, Duffy C, Holley C, Cabrera JA, Crampton M, et al. Pioglitazone increases PGC1-alpha signaling within chronically ischemic myocardium. Basic Res Cardiol. 2016;111:37. https://doi.org/10.1007/s00395-016-0555-4.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kou G, Li Z, Wu C, Liu Y, Hu Y, Guo L, et al. Citrus tangeretin improves skeletal muscle mitochondrial biogenesis via activating the AMPK-PGC1-alpha pathway in vitro and in vivo: a possible mechanism for its beneficial effect on physical performance. J Agric Food Chem. 2018;66:11917–25.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81770284, 31671187, 81673425), and the CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-078).

Author information

Affiliations

Authors

Contributions

HHL and BFY designed and supervised all aspects of the study and analysis. LZ, YNW, JMJ, AS, YL, and TYL performed study and analysis the data. RNF, JBS, YYG, TZJ, and YYL assisted in this study. HLS, HHL, and BFY finalized the manuscript.

Corresponding authors

Correspondence to Hai-hai Liang or Bao-feng Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Yn., Ju, Jm. et al. Mzb1 protects against myocardial infarction injury in mice via modulating mitochondrial function and alleviating inflammation. Acta Pharmacol Sin 42, 691–700 (2021). https://doi.org/10.1038/s41401-020-0489-0

Download citation

Keywords

  • myocardial infarction
  • cardiomyocyte
  • Mzb1
  • mitochondria
  • inflammation
  • apoptosis
  • AMPK-PGC1α pathway
  • macrophages

Search

Quick links