DGAT1 inhibitors protect pancreatic β-cells from palmitic acid-induced apoptosis


Previous studies demonstrated that prolonged exposure to elevated levels of free fatty acids (FFA), especially saturated fatty acids, could lead to pancreatic β-cell apoptosis, which plays an important role in the progression of type 2 diabetes (T2D). Diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the final step of triglyceride (TG) synthesis, has been reported as a novel target for the treatment of multiple metabolic diseases. In this study we evaluated the potential beneficial effects of DGAT1 inhibitors on pancreatic β-cells, and further verified their antidiabetic effects in db/db mice. We showed that DGAT1 inhibitors (4a and LCQ908) at the concentration of 1 μM significantly ameliorated palmitic acid (PA)-induced apoptosis in MIN6 pancreatic β-cells and primary cultured mouse islets; oral administration of a DGAT1 inhibitor (4a) (100 mg/kg) for 4 weeks significantly reduced the apoptosis of pancreatic islets in db/db mice. Meanwhile, 4a administration significantly decreased fasting blood glucose and TG levels, and improved glucose tolerance and insulin tolerance in db/db mice. Furthermore, we revealed that pretreatment with 4a (1 μM) significantly alleviated PA-induced intracellular lipid accumulation, endoplasmic reticulum (ER) stress, and proinflammatory responses in MIN6 cells, which might contribute to the protective effects of DGAT1 inhibitors on pancreatic β-cells. These findings provided a better understanding of the antidiabetic effects of DGAT1 inhibitors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: DGAT1 inhibitors dose-dependently increase cell viability in PA-treated MIN6 cells.
Fig. 2: Inhibition of DGAT1 ameliorates PA-induced apoptosis in MIN6 cells.
Fig. 3: 4a reduces the apoptosis of islet cells both in vitro and in vivo.
Fig. 4: Long-term administration of 4a improves glucose and lipid metabolism in db/db mice.
Fig. 5: DGAT1 inhibitors decrease PA-induced lipid accumulation, ER stress, and proinflammatory responses in MIN6 cells.


  1. 1.

    Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46:3–19.

    CAS  PubMed  Google Scholar 

  2. 2.

    Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2011;8:228–36.

    PubMed  Google Scholar 

  3. 3.

    Moffitt JH, Fielding BA, Evershed R, Berstan R, Currie JM, Clark A. Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro. Diabetologia. 2005;48:1819–29.

    CAS  PubMed  Google Scholar 

  4. 4.

    Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. 2008;29:351–66.

    CAS  PubMed  Google Scholar 

  5. 5.

    Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes. 1995;44:863–70.

    CAS  PubMed  Google Scholar 

  6. 6.

    Soumaya K. Molecular mechanisms of insulin resistance in diabetes. In: Ahmad SI, editor. Diabetes: an old disease, a new insight. New York (NY): Springer; 2013. p. 240–51.

  7. 7.

    Boucher A, Lu D, Burgess SC, Telemaque-Potts S, Jensen MV, Mulder H, et al. Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. J Biol Chem. 2004;279:27263–71.

    CAS  PubMed  Google Scholar 

  8. 8.

    Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE. Diabetes and apoptosis: lipotoxicity. Apoptosis. 2009;14:1484–95.

    CAS  PubMed  Google Scholar 

  9. 9.

    Janikiewicz J, Hanzelka K, Kozinski K, Kolczynska K, Dobrzyn A. Islet β-cell failure in type 2 diabetes – within the network of toxic lipids. Biochem Biophys Res Commun. 2015;460:491–6.

    CAS  PubMed  Google Scholar 

  10. 10.

    Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.

    CAS  PubMed  Google Scholar 

  11. 11.

    Liu J, Chang F, Li F, Fu H, Wang J, Zhang S, et al. Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun. 2015;463:262–7.

    CAS  PubMed  Google Scholar 

  12. 12.

    Després J-P, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.

    PubMed  Google Scholar 

  13. 13.

    Lee Y, Lingvay I, Szczepaniak LS, Ravazzola M, Orci L, Unger RH. Pancreatic steatosis: harbinger of type 2 diabetes in obese rodents. Int J Obes. 2009;34:396–400.

    Google Scholar 

  14. 14.

    Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA. 1998;95:2498–502.

    CAS  PubMed  Google Scholar 

  15. 15.

    Shi Y, Cheng D. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab. 2009;297:E10–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys. 2018;655:1–11.

    CAS  PubMed  Google Scholar 

  17. 17.

    Yen C-LE, Stone SJ, Koliwad S, Harris C, Farese RV Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49:2283–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem. 2004;279:11767–76.

    CAS  PubMed  Google Scholar 

  19. 19.

    Chen HC, Ladha Z, Smith SJ, Robert V, Farese J. Analysis of energy expenditure at different ambient temperatures in mice lacking DGAT1. Am J Physiol Endocrinol Metab. 2003;284:E213–8.

    CAS  PubMed  Google Scholar 

  20. 20.

    Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD, Pulawa LK, et al. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest. 2002;109:1049–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ohshiro T, Tomoda H. Acyltransferase inhibitors: a patent review (2010–present). Expert Opin Ther Pat. 2015;25:145–58.

    CAS  PubMed  Google Scholar 

  22. 22.

    Zammit VA, Buckett LK, Turnbull AV, Wure H, Proven A. Diacylglycerol acyltransferases: potential roles as pharmacological targets. Pharmacol Ther. 2008;118:295–302.

    CAS  PubMed  Google Scholar 

  23. 23.

    Kelpe CL, Johnson LM, Poitout V. Increasing triglyceride synthesis inhibits glucose-induced insulin secretion in isolated rat islets of langerhans: a study using adenoviral expression of diacylglycerol acyltransferase. Endocrinology. 2002;143:3326–32.

    CAS  PubMed  Google Scholar 

  24. 24.

    Briaud I, Harmon JS, Kelpe CL, Segu VB, Poitout V. Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes. 2001;50:315–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wang T, Sun P, Chen L, Huang Q, Chen K, Jia Q, et al. Cinnamtannin D-1 protects pancreatic beta-cells from palmitic acid-induced apoptosis by attenuating oxidative stress. J Agric Food Chem. 2014;62:5038–45.

    CAS  PubMed  Google Scholar 

  26. 26.

    Martinez SC, Tanabe K, Cras-Meneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA. Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008;57:846–59.

    CAS  PubMed  Google Scholar 

  27. 27.

    Wu J, Sun P, Zhang X, Liu H, Jiang H, Zhu W, et al. Inhibition of GPR40 protects MIN6 beta cells from palmitate-induced ER stress and apoptosis. J Cell Biochem. 2012;113:1152–8.

    CAS  PubMed  Google Scholar 

  28. 28.

    Hu H, He LY, Gong Z, Li N, Lu YN, Zhai QW, et al. A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun. 2009;390:557–63.

    CAS  PubMed  Google Scholar 

  29. 29.

    Thorn K, Bergsten P. Fatty acid-induced oxidation and triglyceride formation is higher in insulin-producing MIN6 cells exposed to oleate compared to palmitate. J Cell Biochem. 2010;111:497–507.

    PubMed  Google Scholar 

  30. 30.

    Dow RL, Andrews MP, Li JC, Michael Gibbs E, Guzman-Perez A, LaPerle JL, et al. Defining the key pharmacophore elements of PF-04620110: discovery of a potent, orally-active, neutral DGAT-1 inhibitor. Bioorg Med Chem. 2013;21:5081–97.

    CAS  PubMed  Google Scholar 

  31. 31.

    Kwak HJ, Pyun YM, Kim JY, Pagire HS, Kim KY, Kim KR, et al. Synthesis and biological evaluation of aminobenzimidazole derivatives with a phenylcyclohexyl acetic acid group as anti-obesity and anti-diabetic agents. Bioorg Med Chem Lett. 2013;23:4713–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Tomimoto D, Okuma C, Ishii Y, Akiyama Y, Ohta T, Kakutani M. et al. Pharmacological characterization of [trans-5'-(4-amino-7,7-dimethyl-2-trifluoromethyl-7H-pyrimido[4,5-b][1,4]oxazin-6-yl)-2',3'-dihydrospiro(cyclohexane-1,1'-inden)-4-yl]acetic acid monobenzenesulfonate(JTT-553), a novel acyl CoA:diacylglycerol transferase (DGAT) 1 inhibitor. Biol Pharm Bull. 2015;38:263–9.

    CAS  PubMed  Google Scholar 

  33. 33.

    Hagman DK, Hays LB, Parazzoli SD, Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem. 2005;280:32413–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50:1771–7.

    CAS  PubMed  Google Scholar 

  35. 35.

    Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem. 1998;273:3547–50.

    CAS  PubMed  Google Scholar 

  36. 36.

    Varshney R, Varshney R, Mishra R, Gupta S, Sircar D, Roy P. Kaempferol alleviates palmitic acid-induced lipid stores, endoplasmic reticulum stress and pancreatic beta-cell dysfunction through AMPK/mTOR-mediated lipophagy. J Nutr Biochem. 2018;57:212–27.

    CAS  PubMed  Google Scholar 

  37. 37.

    Preston AM, Gurisik E, Bartley C, Laybutt DR, Biden TJ. Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia. 2009;52:2369–73.

    CAS  PubMed  Google Scholar 

  38. 38.

    Gu Y, Yang Y, Cao X, Zhao Y, Gao X, Sun C, et al. Plin3 protects against alcoholic liver injury by facilitating lipid export from the endoplasmic reticulum. J Cell Biochem. 2019;120:16075–87.

    CAS  PubMed  Google Scholar 

  39. 39.

    Fonseca SG, Gromada J, Urano F. Endoplasmic reticulum stress and pancreatic beta-cell death. Trends Endocrinol Metab. 2011;22:266–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 2016;57:1329–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Okawa M, Fujii K, Ohbuchi K, Okumoto M, Aragane K, Sato H, et al. Role of MGAT2 and DGAT1 in the release of gut peptides after triglyceride ingestion. Biochem Biophys Res Commun. 2009;390:377–81.

    CAS  PubMed  Google Scholar 

  42. 42.

    Maciejewski BS, LaPerle JL, Chen D, Ghosh A, Zavadoski WJ, McDonald TS, et al. Pharmacological inhibition to examine the role of DGAT1 in dietary lipid absorption in rodents and humans. Am J Physiol Gastrointest Liver Physiol. 2013;304:G958–69.

    CAS  PubMed  Google Scholar 

  43. 43.

    Chitraju C, Mejhert N, Haas JT, Diaz-Ramirez LG, Grueter CA, Imbriglio JE, et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 2017;26:407–18.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117:1679–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Timmers S, de Vogel-van den Bosch J, Hesselink MK, van Beurden D, Schaart G, Ferraz MJ, et al. Paradoxical increase in TAG and DAG content parallel the insulin sensitizing effect of unilateral DGAT1 overexpression in rat skeletal muscle. PLoS One. 2011;6:e14503.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We gratefully acknowledge the kind provision of MIN6 cells by Professor S. Seino (Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan). This work was supported by grants from the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program,” China (2018ZX09711002-002-007); the “Personalized Medicines-Molecular Signature-based Drug Discovery and Development,” the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12040336); the National Natural Science Foundation of China (81503124, 81773791, and 81473262); and the Institutes for Drug Discovery and Development, Chinese Academy of Sciences (CASIMM0120162025).

Author information




HYW and TW designed the research; JSH, BBG, and GHW performed the research and analyzed the data; LMZ and YHH synthesized the compounds; JSH, TW, and HYW wrote the paper.

Corresponding authors

Correspondence to Ting Wang or He-yao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Guo, B., Wang, G. et al. DGAT1 inhibitors protect pancreatic β-cells from palmitic acid-induced apoptosis. Acta Pharmacol Sin (2020). https://doi.org/10.1038/s41401-020-0482-7

Download citation


  • type 2 diabetes
  • DGAT1 inhibitors
  • pancreatic β-cells
  • apoptosis
  • ER stress
  • inflammation