Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma


Sorafenib is the first-line medication for advanced hepatocellular carcinoma (HCC), but it can only extend limited survival. It is imperative to find a combination strategy to increase sorafenib efficacy. Artesunate is such a preferred candidate, because artesunate is clinically well-tolerated and more importantly both drugs can induce ferroptosis through different mechanisms. In this study we investigated the combined effect of sorafenib and artesunate in inducing ferroptosis of HCC and elucidated the involved molecular mechanisms. We showed that artesunate greatly enhanced the anticancer effects of low dose of sorafenib against Huh7, SNU-449, and SNU-182 HCC cell lines in vitro and against Huh7 cell xenograft model in Balb/c nude mice. The combination index method confirmed that the combined effect of sorafenib and artesunate was synergistic. Compared with the treatment with artesunate or sorafenib alone, combined treatment induced significantly exacerbated lipid peroxidation and ferroptosis, which was blocked by N-acetyl cysteine and ferroptosis inhibitors liproxstatin-1 and deferoxamine mesylate, but not by inhibitors of other types of cell death (z-VAD, necrostatin-1 and belnacasan). In Huh7 cells, we demonstrated that the combined treatment induced oxidative stress and lysosome-mediated ferritinophagy, two essential aspects of ferroptosis. Sorafenib at low dose mainly caused oxidative stress through mitochondrial impairments and SLC7A11-invovled glutathione depletion. Artesunate-induced lysosome activation synergized with sorafenib-mediated pro-oxidative effects by promoting sequential reactions including lysosomal cathepsin B/L activation, ferritin degradation, lipid peroxidation, and consequent ferroptosis. Taken together, artesunate could be repurposed to sensitize sorafenib in HCC treatment. The combined treatment can be easily translated into clinical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Artesunate sensitized HCC cells to sorafenib-induced death.
Fig. 2: The combined treatment inhibited xenograft tumors in vivo through extensive cell death.
Fig. 3: The combined treatment-induced lipid peroxidation and ferroptosis.
Fig. 4: The combined treatment impaired mitochondrial functions.
Fig. 5: The combined treatment-induced lysosomal activation and ferritin degradation.
Fig. 6: The combined treatments caused consistent changes in FTL degradation and MDA production in xenograft nodules in vivo.


  1. 1.

    Villanueva A, Hernandez-Gea V, Llovet JM. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat Rev Gastroenterol Hepatol. 2012;10:34–42.

    Article  Google Scholar 

  2. 2.

    European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article  Google Scholar 

  3. 3.

    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    CAS  Article  Google Scholar 

  4. 4.

    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    CAS  Article  Google Scholar 

  5. 5.

    Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616.

    Article  Google Scholar 

  6. 6.

    Yau T, Yao TJ, Chan P, Wong H, Pang R, Fan ST, et al. The significance of early alpha-fetoprotein level changes in predicting clinical and survival benefits in advanced hepatocellular carcinoma patients receiving sorafenib. Oncologist. 2011;16:1270–9.

    CAS  Article  Google Scholar 

  7. 7.

    Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: looking outside the box. J Hepatol. 2020;72:342–52.

    CAS  Article  Google Scholar 

  8. 8.

    Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, et al. Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol. 2009;51:725–33.

    CAS  Article  Google Scholar 

  9. 9.

    Jung DH, Tak E, Hwang S, Song GW, Ahn CS, Kim KH, et al. Antitumor effect of sorafenib and mTOR inhibitor in liver transplantation recipients with hepatocellular carcinoma recurrence. Liver Transpl. 2018;24:932–45.

    Article  Google Scholar 

  10. 10.

    Lin CH, Elkholy KH, Wani NA, Li D, Hu P, Barajas JM, et al. Ibrutinib potentiates anti-hepatocarcinogenic efficacy of sorafenib by targeting EGFR in tumor cells and BTK in immune cells in the stroma. Mol Cancer Ther. 2020;19:384–96.

    CAS  Article  Google Scholar 

  11. 11.

    Ou DL, Shen YC, Liang JD, Liou JY, Yu SL, Fan HH, et al. Induction of Bim expression contributes to the antitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res. 2009;15:5820–8.

    CAS  Article  Google Scholar 

  12. 12.

    Chen KF, Yu HC, Liu TH, Lee SS, Chen PJ, Cheng AL. Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol. 2010;52:88–95.

    CAS  Article  Google Scholar 

  13. 13.

    Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:282–96.

    CAS  Article  Google Scholar 

  14. 14.

    Wei G, Wang M, Hyslop T, Wang Z, Carr BI. Vitamin K enhancement of sorafenib-mediated HCC cell growth inhibition in vitro and in vivo. Int J Cancer. 2010;127:2949–58.

    CAS  Article  Google Scholar 

  15. 15.

    Pal HC, Baxter RD, Hunt KM, Agarwal J, Elmets CA, Athar M, et al. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget. 2015;6:28296–311.

    Article  Google Scholar 

  16. 16.

    Chen JH, Chiang IT, Hsu FT. Protein kinase B inactivation is associated with magnolol-enhanced therapeutic efficacy of sorafenib in hepatocellular carcinoma in vitro and in vivo. Cancers. 2019;12:87.

    CAS  Article  PubMed Central  Google Scholar 

  17. 17.

    Wu WD, Chen PS, Omar HA, Arafa ES, Pan HW, Jeng J, et al. Antrodia cinnamomea boosts the anti-tumor activity of sorafenib in xenograft models of human hepatocellular carcinoma. Sci Rep. 2018;8:12914.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of non-apoptotic cell death. Cell. 2012;149:1060–72.

    CAS  Article  Google Scholar 

  19. 19.

    Stockwell BR, Angeli FJP, Bayir H, Bush AI, Conrad M, et al. Ferroptosis: aregulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    CAS  Article  Google Scholar 

  20. 20.

    Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife. 2014;3:e02523.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;2:517–32.

    Article  Google Scholar 

  22. 22.

    Sun X, Yan P, Zou C, Wong YK, Shu Y, Lee YM, et al. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev. 2019;39:2172–93.

    Article  Google Scholar 

  23. 23.

    Wang J, Xu C, Wong YK, Li Y, Liao F, Jiang T, et al. Artemisinin, the magic drug discovered from traditional chinese medicine. Engineering. 2018;5:32–9.

    Article  Google Scholar 

  24. 24.

    Wang J, Zhang CJ, Chia WN, Loh CCY, Li Z, Lee YM, et al. Haem-activated promiscuous targeting of artemisinin in plasmodium falciparum. Nat Commun. 2015;6:10111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan KSW, et al. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014;289:33425–41.

    CAS  Article  Google Scholar 

  26. 26.

    Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    CAS  Article  Google Scholar 

  27. 27.

    Zhou J, Tan SH, Nicolas V, Chantal B, Yang ND, Zhang J, et al. Activation of lysosomal function in the course of autophagy via MTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013;23:508–23.

    CAS  Article  Google Scholar 

  28. 28.

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    CAS  Article  Google Scholar 

  29. 29.

    Lu GD, Ang YH, Zhou J, Tamilarasi J, Yan B, Lim YC, et al. CCAAT/enhancer binding protein α predicts poorer prognosis and prevents energy starvation-induced cell death in hepatocellular carcinoma. Hepatology. 2015;61:965–78.

    CAS  Article  Google Scholar 

  30. 30.

    Roh JL, Kim EH, Jang H, Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017;11:254–62.

    CAS  Article  Google Scholar 

  31. 31.

    Greenshields AL, Shepherd TG, Hoskin DW. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog. 2017;56:75–93.

    CAS  Article  Google Scholar 

  32. 32.

    Nakase I, Gallis B, Takatani-Nakase T, Oh S, Lacoste E, Singh NP, et al. Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett. 2009;274:290–8.

    CAS  Article  Google Scholar 

  33. 33.

    Jeong DE, Song HJ, Lim S, Lee SJ, Lim JE, Nam DH, et al. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget. 2015;6:33046–64.

    Article  Google Scholar 

  34. 34.

    Vandewynckel YP, Laukens D, Geerts A, Vanhove C, Descamps B, Colle I, et al. Therapeutic effects of artesunate in hepatocellular carcinoma: repurposing an ancient antimalarial agent. Eur J Gastroenterol Hepatol. 2014;26:861–70.

    CAS  Article  Google Scholar 

  35. 35.

    Wu J, Liu S, Xing YR, Zhao RP, Xie J, Hu D, et al. Artesunate promotes sensitivity to sorafenib in hepatocellular carcinoma. Biochem Biophys Res Commun. 2019;519:41–5.

    Article  Google Scholar 

  36. 36.

    Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–8.

    CAS  Article  Google Scholar 

  37. 37.

    Feng J, Lu PZ, Zhu GZ, Hooi SC, Wu Y, Huang XW, et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol Sin. 2020.

  38. 38.

    Houessinon A, François C, Sauzay C, Louandre C, Mongelard G, Godin C, et al. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer. 2016;15:38.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (81672370 and 81972291), the Guangxi Natural Science Foundation Key Grant (2018GXNSFDA050006), the Hundred-Talent Program (2016), the Guangxi Medical University Training Program for Distinguished Young Scholars (2017), the OpenGrant from Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University, GKE2018-02) (all awarded to GDL); the Guangxi Natural Science Foundation Key Grant (2017GXNSFDA198020) awarded to JZ, and the Guangxi Specially Appointed Professor Grant awarded to JW.

Author information




ZJL, XWH, and HQD equally performed the majority of experiments and analyzed the data; ZJL, XWH, and YJL performed the nude mouse xenograft experiment; HQD and JF conducted the Seahorse metabolic experiments and flow cytometry analysis; YW prepared the figures; XMY, ZXW, and JHD provided technical support; PHC and HS performed the literature review; JGW and GDL designed the research and summarized the data; JZ and GDL wrote the paper.

Corresponding authors

Correspondence to Ji-gang Wang or Jing Zhou or Guo-dong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Zj., Dai, Hq., Huang, Xw. et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin (2020).

Download citation


  • Sorafenib
  • Artesunate
  • HCC
  • Ferroptosis
  • Mitochondria
  • Lysosome

Further reading