Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gut microbiota in pancreatic diseases: possible new therapeutic strategies

Abstract

Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Interactions between gut microbiota dysbiosis and the development of type 1 diabetes.
Fig. 2: Interactions between intestinal microbiota dysbiosis and the development of acute pancreatitis.
Fig. 3: Proposed relationship between gut microbiota dysbiosis and the development of chronic pancreatitis.
Fig. 4: Proposed relationship between gut microbiota dysbiosis and pancreatic cancer development.

References

  1. 1.

    Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Pagliari D, Piccirillo CA, Larbi A, Cianci R. The interactions between innate immunity and microbiota in gastrointestinal diseases. J Immunol Res. 2015;2015:898297.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Vila AV, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med. 2018;10:eaap8914.

    CAS  Article  Google Scholar 

  4. 4.

    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–9.

    PubMed  Article  Google Scholar 

  6. 6.

    Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Sun MF, Shen YQ. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Res Rev. 2018;45:53–61.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Akshintala VS, Talukdar R, Singh VK, Goggins M. The gut microbiome in pancreatic disease. Clin Gastroenterol Hepatol. 2019;17:290–5.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Zhou Q, Melton DA. Pancreas regeneration. Nature. 2018;557:351–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Frost F, Kacprowski T, Ruhlemann M, Bulow R, Kuhn JP, Franke A, et al. Impaired exocrine pancreatic function associates with changes in intestinal microbiota composition and diversity. Gastroenterology. 2019;156:1010–5.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Sun J, Furio L, Mecheri R, vanderDoes AM, Lundeberg E, Saveanu L, et al. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity. 2015;43:304–17.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13:321–35.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Tai N, Wong FS, Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord. 2015;16:55–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Zhu Y, He C, Li X, Cai Y, Hu J, Liao Y, et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice. J Gastroenterol. 2019;54:347–58.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wei MY, Shi S, Liang C, Meng QC, Hua J, Zhang YY, et al. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol Cancer. 2019;18:97.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    PubMed  Article  Google Scholar 

  17. 17.

    Mishra SP, Wang S, Nagpal R, Miller B, Singh R, Taraphder S, et al. Probiotics and prebiotics for the amelioration of type 1 diabetes: present and future perspectives. Microorganisms. 2019;7:67.

  18. 18.

    Bibbo S, Dore MP, Pes GM, Delitala G, Delitala AP. Is there a role for gut microbiota in type 1 diabetes pathogenesis? Ann Med. 2017;49:11–22.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Sane F, Scuotto A, Pierrat V, Kacet N, Hober D, Romond MB. Diabetes progression and alterations in gut bacterial translocation: prevention by diet supplementation with human milk in NOD mice. J Nutr Biochem. 2018;62:108–22.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Sorini C, Cosorich I, Conte ML, Giorgi LD, Facciotti F, Lucianò R, et al. Loss of gut barrier integrity triggers activation ofislet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A. 2019;116:15140–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Mullaney JA, Stephens JE, Costello ME, Fong C, Geeling BE, Gavin PG, et al. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota. Microbiome. 2018;6:35.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Alkanani AK, Hara N, Gottlieb PA, Ir D, Robertson CE, Wagner BD, et al. Alterations in intestinal microbiota correlate with susceptibility totype 1 diabetes. Diabetes. 2015;64:3510–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Roesch LF, Lorca GL, Casella G, Giongo A, Naranjo A, Pionzio AM, et al. Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J. 2009;3:536–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Daft JG, Ptacek T, Kumar R, Morrow C, Lorenz RG. Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother. Microbiome. 2015;3:17.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, et al. Aberrant gut microbiota composition at the onsetof type 1 diabetes in young children. Diabetologia. 2014;57:1569–77.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Roop RM, Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6:e25792.

    Article  CAS  Google Scholar 

  27. 27.

    Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18:552–62.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Hu Y, Jin P, Peng J, Zhang X, Wong FS, Wen L. Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice. J Autoimmun. 2016;72:47–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Candon S, Perez-Arroyo A, Marquet C, Valette F, Foray AP, Pelletier B, et al. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS One. 2015;10:e0125448.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Wu C, Pan LL, Niu W, Fang X, Liang W, Li J, et al. Modulation of gut microbiota by low methoxyl pectin attenuates type 1 diabetes in non-obese diabetic mice. Front Immunol. 2019;10:1733.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Jia L, Shan K, Pan LL, Feng N, Lv Z, Sun Y, et al. Clostridium butyricum CGMCC0313.1 protects against autoimmune diabetes by modulating intestinal immune homeostasis and inducing pancreatic regulatory T cells. Front Immunol. 2017;8:1345.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2018;67:1445–53.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011;108:11548–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Zheng P, Li Z, Zhou Z. Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metab Res Rev. 2018;34:e3043.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Lehuen A, Diana J, Zaccone P, Cooke A. Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol. 2010;10:501–13.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11:46.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Leiva-Gea I, Sanchez-Alcoholado L, Martin-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. Diabetes Care. 2018;41:2385–95.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5:82–91.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62:1238–44.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Mejía-León ME, Petrosino JF, Ajami NJ, Domínguez-Bello MG, de la Barca AMC. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep. 2014;4:3814.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Endesfelder D, zu Castell W, Ardissone A, Davis-Richardson AG, Achenbach P, Hagen M, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes. 2014;63:2006–14.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Huang Y, Li SC, Hu J, Ruan HB, Guo HM, Zhang HH, et al. Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Res Clin Pract. 2018;141:256–63.

    PubMed  Article  Google Scholar 

  43. 43.

    Ho J, Nicolucci AC, Virtanen H, Schick A, Meddings J, Reimer RA, et al. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes. J Clin Endocrinol Metab. 2019;104:4427–40.

    PubMed  Article  Google Scholar 

  44. 44.

    Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 2016;170:20–8.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Sofi MH, Gudi R, Karumuthil-Melethil S, Perez N, Johnson BM, Vasu C. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes. 2014;63:632–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142:24–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A. 2005;102:2916–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Zoka A, Barna G, Somogyi A, Muzes G, Olah A, Al-Aissa Z, et al. Extension of the CD4(+)Foxp3(+)CD25(-/low) regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity. 2015;48:289–97.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Tanca A, Palomba A, Fraumene C, Manghina V, Silverman M, Uzzau S. Clostridial butyrate biosynthesis enzymes are significantly depleted in the gut microbiota of nonobese diabetic mice. mSphere. 2018;3:e00492–18.

  50. 50.

    Miani M, Le Naour J, Waeckel-Enee E, Verma SC, Straube M, Emond P, et al. Gut microbiota-stimulated innate lymphoid cells support beta-defensin 14 expression in pancreatic endocrine cells, preventing autoimmune diabetes. Cell Metab. 2018;28:557–72.e6.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455:1109–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L. Long term effect of gut microbiota transfer on diabetes development. J Autoimmun. 2014;53:85–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Burrows MP, Volchkov P, Kobayashi KS, Chervonsky AV. Microbiota regulates type 1 diabetes through Toll-like receptors. Proc Natl Acad Sci U S A. 2015;112:9973–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol. 2020;17:53–64.

    PubMed  Article  Google Scholar 

  56. 56.

    Frossard JL, Steer ML, Pastor CM. Acute pancreatitis. Lancet. 2008;371:143–52.

    PubMed  Article  Google Scholar 

  57. 57.

    Adolph TE, Mayr L, Grabherr F, Schwarzler J, Tilg H. Pancreas-microbiota cross talk in health and disease. Annu Rev Nutr. 2019;39:249–66.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Garg PK, Singh VP. Organ failure due to systemic injury in acute pancreatitis. Gastroenterology. 2019;156:2008–23.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Lund H, Tonnesen H, Tonnesen MH, Olsen O. Long-term recurrence and death rates after acute pancreatitis. Scand J Gastroenterol. 2006;41:234–8.

    PubMed  Article  Google Scholar 

  60. 60.

    Ahmed Ali U, Issa Y, Hagenaars JC, Bakker OJ, van Goor H, Nieuwenhuijs VB, et al. Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis. Clin Gastroenterol Hepatol. 2016;14:738–46.

    PubMed  Article  Google Scholar 

  61. 61.

    Tu J, Zhang J, Ke L, Yang Y, Yang Q, Lu G, et al. Endocrine and exocrine pancreatic insufficiency after acute pancreatitis: long-term follow-up study. BMC Gastroenterol. 2017;17:114.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Liu HY, Li WQ, Wang XY, Li JS, Yu WK. Early gut mucosal dysfunction in patients with acute pancreatitis. Pancreas. 2008;36:192–6.

    PubMed  Article  Google Scholar 

  63. 63.

    Sonika U, Goswami P, Thakur B, Yadav R, Das P, Ahuja V, et al. Mechanism of increased intestinal permeability in acute pancreatitis: alteration in tight junction proteins. J Clin Gastroenterol. 2017;51:461–6.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Ahuja M, Schwartz DM, Tandon M, Son A, Zeng M, Swaim W, et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 2017;25:635–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Chen J, Huang C, Wang J, Zhou H, Lu Y, Lou L, et al. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One. 2017;12:e0176583.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wong W. Shaping the gut microbiome from the pancreas. Sci Signal. 2017;10:eaan3016.

    PubMed  Article  Google Scholar 

  68. 68.

    Bu¨ chler MW GB, Mu¨ ller CA, Friess H, Seiler CA, Uh W. Acute necrotizing pancreatitis: treatment strategy according to the status of infection. Ann Surg. 2000;232:619–26.

    Article  Google Scholar 

  69. 69.

    Beger HG, Bittner R, Block S, Büchler M. Bacterial contamination of pancreatic necrosis. Gastroenterology. 1986;91:433–8.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Isenmann R, Runzi M, Kron M, Kahl S, Kraus D, Jung N, et al. Prophylactic antibiotic treatment in patients with predicted severe acute pancreatitis: a placebo-controlled, double-blind trial. Gastroenterology. 2004;126:997–1004.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Zheng JY, Lou LH, Fan JJ, Huang CL, Mei QX, Wu JH, et al. Commensal Escherichia coli aggravates acute necrotizing pancreatitis through targeting of intestinal epithelial cells. Appl Environ Microbiol. 2019;85:e00059–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Li J, Pan X, Yang J, Jia L, Wu C, Liu H, et al. Enteral virus depletion modulates experimental acute pancreatitis via toll-like receptor 9 signaling. Biochem Pharmacol. 2020;171:113710.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    van Minnen LP, Timmerman HM, Lutgendorff F, Verheem A, Harmsen W, Konstantinov SR, et al. Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery. 2007;141:470–80.

    PubMed  Article  Google Scholar 

  74. 74.

    Lutgendorff F, Trulsson LM, van Minnen LP, Rijkers GT, Timmerman HM, Franzen LE, et al. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1111–21.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Akyol S, Mas MR, Comert B, Ateskan U, Yasar M, Aydogan H, et al. The effect of antibiotic and probiotic combination therapy on secondary pancreatic infections and oxidative stress parameters in experimental acute necrotizing pancreatitis. Pancreas. 2003;26:363–7.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Rychter JW, Minnen Van, Verheem A, Timmerman HM, Rijkers GT, Schipper MEI, et al. Pretreatment but not treatment with probiotics abolishes mouse intestinal barrier dysfunction in acute pancreatitis. Surgery. 2009;145:157–67.

    PubMed  Article  Google Scholar 

  77. 77.

    Hegazi RAF, O’Keefe SJD. Nutritional immunomodulation of acute pancreatitis. Curr Gastroenterol Rep. 2007;9:99–106.

    PubMed  Article  Google Scholar 

  78. 78.

    Tan CC, Ling ZX, Huang Y, Cao YD, Liu Q, Cai T, et al. Dysbiosis of intestinal microbiota associated withinflammation involved in the progression of acute pancreatitis. Pancreas. 2015;44:868–75.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Roberts KM, Nahikian-Nelms M, Ukleja A, Lara LF. Nutritional aspects of acute pancreatitis. Gastroenterol Clin N Am. 2018;47:77–94.

    Article  Google Scholar 

  80. 80.

    Oláh A, Belágyi T, Issekutz A, Gamal ME, Bengmark S. Randomized clinical trial of specific lactobacillus and fibre supplement to early enteral nutrition in patients with acute pancreatitis. Br J Surg. 2002;89:1103–7.

    PubMed  Article  Google Scholar 

  81. 81.

    Oláh A, Belágyi T, Pótó L, Romics L Jr., Bengmark S. Synbiotic control of inflammation and infection in severe acute pancreatitis: a prospective, randomized, double blind study. Hepatogastroenterology. 2007;54:590–4.

    PubMed  Google Scholar 

  82. 82.

    Besselink MGH, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:651–9.

    PubMed  Article  Google Scholar 

  83. 83.

    van Baal MC, Kohout P, Besselink MG, van Santvoort HC, Benes Z, Zazula R, et al. Probiotic treatment with Probioflora in patients with predicted severe acute pancreatitis without organ failure. Pancreatology. 2012;12:458–62.

    PubMed  Article  Google Scholar 

  84. 84.

    Awla D, Abdulla A, Regnér S, Thorlacius H. TLR4 but not TLR2 regulates inflammation and tissue damagein acute pancreatitis induced by retrograde infusionof taurocholate. Inflamm Res. 2011;60:1093–8.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Sharif R, Dawra R, Wasiluk K, Phillips P, Dudeja V, Kurt-Jones E, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 2009;58:813–9.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8:487–96.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Miyake Y, Yamasaki S. Sensing necrotic cells. Adv Exp Med Biol. 2012;738:144–52.

  88. 88.

    Yasuda T, Ueda T, Takeyama Y, Shinzeki M, Sawa H, Nakajima T, et al. Significant increase of serum high-mobility group box chromosomal protein 1 levels in patients with severe acute pancreatitis. Pancreas. 2006;33:359–63.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Luan ZG, Zhang H, Ma XC, Zhang C, Guo RX. Role of high-mobility group box 1 protein in the pathogenesis of intestinal barrier injury in rats with severe acute pancreatitis. Pancreas. 2010;39:216–23.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Watanabe T, Kudo M, Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 2017;10:283–98.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Ramsey ML, Conwell DL, Hart PA. Complications of chronic pancreatitis. Dig Dis Sci. 2017;62:1745–50.

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Han MM, Zhu XY, Peng YF, Lin H, Liu DC, Li L. The alterations of gut microbiota in mice with chronic pancreatitis. Ann Transl Med. 2019;7:464.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Leppkes M, Nowecki S, Wirtz SJ, Becker C, Neurath MF. 284 intestinal microbiota contributes to the pathogenesis of IL-17A induced chronic pancreatitis. Gastroenterology. 2014;146:S–68.

    Article  Google Scholar 

  94. 94.

    Nishiyama H, Nagai T, Kudo M, Okazaki Y, Azuma Y, Watanabe T, et al. Supplementation of pancreatic digestive enzymes alters the composition of intestinal microbiota in mice. Biochem Biophys Res Commun. 2018;495:273–9.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    O’Brien SJ, Omer E. Chronic pancreatitis and nutrition therapy. Nutr Clin Pract. 2019;34:S13–26.

    PubMed  Article  Google Scholar 

  96. 96.

    Vlodov J, Tenner SM. Acute and chronic pancreatitis. Prim Care. 2001;28:607–28.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Ozturk K, Tasci I, Yasar M, Akay C, Alcigir M, Vural S, et al. Effects of rapamycin treatment on pancreatic fibrosis, cellular apoptosis and oxidative stress in experimental chronic pancreatitis model. Acta Gastroenterol Belg. 2015;78:3–7.

    CAS  PubMed  Google Scholar 

  98. 98.

    Hu Y, Teng C, Yu S, Wang X, Liang J, Bai X, et al. Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express. 2017;7:39.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Li K, Zhuo C, Teng C, Yu S, Wang X, Hu Y, et al. Effects of Ganoderma lucidum polysaccharides on chronic pancreatitis and intestinal microbiota in mice. Int J Biol Macromol. 2016;93:904–12.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Zhou CH, Meng YT, Xu JJ, Fang X, Zhao JL, Zhou W, et al. Altered diversity and composition of gut microbiota in Chinese patients with chronic pancreatitis. Pancreatology. 2020;20:20–4.

    CAS  Article  Google Scholar 

  101. 101.

    Capurso G, Signoretti M, Archibugi L, Stigliano S, Delle Fave G. Systematic review and meta-analysis: small intestinal bacterial overgrowth in chronic pancreatitis. United Eur Gastroenterol J. 2016;4:697–705.

    Article  Google Scholar 

  102. 102.

    Kurdi BE, Babar S, Iskandarani ME, Bataineh A, Lerch MM, Young M, et al. Factors that affect prevalence of small intestinal bacterial overgrowth in chronic pancreatitis: a systematic review, meta-analysis, and meta-regression. Clin Transl Gastroenterol. 2019;10:e00072.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Hamada S, Masamune A, Nabeshima T, Shimosegawa T. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J Exp Med. 2018;244:113–7.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Jandhyala SM, Madhulika A, Deepika G, Rao GV, Reddy DN, Subramanyam C, et al. Altered intestinal microbiota in patients with chronic pancreatitis: implications in diabetes and metabolic abnormalities. Sci Rep. 2017;7:43640.

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol. 2012;3:344.

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Witt H, Apte MV, Keim V, Wilson JS. Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology. 2007;132:1557–73.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Goecke H, Forssmann U, Uguccioni M, Friess H, Conejo-Garcia JR, Zimmermann A, et al. Macrophages infiltrating the tissue in chronic pancreatitis express the chemokine receptor CCR5. Surgery. 2000;128:806–14.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Deng XY, Wang L, Elm MS, Gabazadeh D, Diorio GJ, Eagon PK, Whitcomb DC. Chronic alcohol consumption accelerates fibrosisin response to cerulein-induced pancreatitis in rats. Am J Pathol. 2005;166:93–106.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Wang C, Li Q, Ren J. Microbiota-immune interaction in the pathogenesis of gut-derived infection. Front Immunol. 2019;10:1873.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Howlader N, Noone A, Krapcho M, Miller D, Brest A, Yu M, et al. SEER cancer statistics review, 1975–2016. National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2016/, based on November 2018 SEER data submission, posted to the SEER web site, April 2019.

  111. 111.

    Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1252–61.

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Iodice S, Gandini S, Maisonneuve P, Lowenfels AB. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg. 2008;393:535–45.

    PubMed  Article  Google Scholar 

  113. 113.

    Chari ST, LeibsonC, Rabe KG, Timmons LJ, Ransom J, de Andrade M, et al. Pancreatic cancer-associated diabetes mellitus prevalence andtemporal association with diagnosis of cancer. Gastroenterology. 2008;134:95–101.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    de Gonzalez AB, SweetlandS, Spencer E. A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer. 2003;89:519–23.

    PubMed Central  Article  PubMed  Google Scholar 

  115. 115.

    Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61:582–8.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Wang C, Li J. Pathogenic microorganisms and pancreatic cancer. Gastrointest Tumors. 2015;2:41–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019;574:264–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Michaud DS, Izard J. Microbiota, oral microbiome, and pancreatic cancer. Cancer J. 2014;20:203–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Zambirinis CP, Pushalkar S, Saxena D, Miller G. Pancreatic cancer, inflammation, and microbiome. Cancer J. 2014;20:195–202.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology. 2018;155:33–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8:403–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro MV, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 2018;39:1068–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16:406.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124.

    Mendez R, Kesh K, Arora N, Di Martino L, McAllister F, Merchant N, et al. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis. 2020;41:561–70.

    PubMed  Article  Google Scholar 

  125. 125.

    Half E, Keren N, Reshef L, Dorfman T, Lachter I, Kluger Y, et al. Fecal microbiome signatures of pancreatic cancer patients. Sci Rep. 2019;9:16801.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. 126.

    Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178:795–806.e12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Gaida MM, Mayer C, Dapunt U, Stegmaier S, Schirmacher P, Wabnitz GH, et al. Expression of the bitter receptor T2R38 in pancreatic cancer localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget. 2016;7:12623–32.

    PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Mitsuhashi K, NoshoK, Sukawa Y, Matsunaga Y, Ito M, Kurihara H, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6:7209–20.

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Ren ZG, Jiang JW, Xie HY, Li A, Lu HF, Xu SY. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget. 2017;8:95176–91.

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Riquelme E, Maitra A, McAllister F. Immunotherapy for pancreatic cancer: more than just a gut feeling. Cancer Discov. 2018;8:386–8.

    PubMed  Article  Google Scholar 

  131. 131.

    Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209:1671–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N, et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Investig. 2012;122:4118–29.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Zambirinis CP, Ochi A, Barilla R, Greco S, Deutsch M, Miller G. Induction of TRIF- or MYD88-dependent pathways perturbs cell cycle regulation in pancreatic cancer. Cell Cycle. 2013;12:1153–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Hu Y, Peng J, Li F, Wong FS, Wen L. Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Sci Rep. 2018;8:15451.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. 135.

    Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemppainen KM, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol. 2014;5:678.

    PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Zhang XM, Zhang ZY, Zhang CH, Wu J, Wang YX, Zhang GX. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers. Biomed Environ Sci. 2018;31:81–6.

    PubMed  Google Scholar 

  137. 137.

    Gorovits ES, Tokareva EV, Khlynova OV, Zhelobov VG, El’kin VD. Complex evaluation of intestine microbiocenosis condition in patients with chronic pancreatitis. Zh Mikrobiol Epidemiol Immunobiol. 2013;4:73–6.

  138. 138.

    Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjønneland A, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancerin a large European prospective cohort study. Gut. 2013;62:1764–70.

    PubMed  Article  Google Scholar 

  139. 139.

    Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67:120–7.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Torres PJ, Fletcher EM, Gibbons SM, Bouvet M, Doran KS, Kelley ST. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ. 2015;3:e1373.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. 141.

    Half E, Keren N, Dorfman T, Reshef L, Lachter I, Kluger Y, et al. P-165 Specific changes in fecal microbiota may differentiate pancreatic cancer patients from healthy individuals. Ann Oncol. 2015;26:iv48.

    Article  Google Scholar 

  142. 142.

    Lin IH, Wu J, Cohen SM, Chen C, Bryk D, Marr M, et al. Abstract 101: Pilot study of oral microbiome and risk of pancreatic cancer. Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 101.

Download references

Acknowledgements

The work was supported by funds from the National Natural Science Foundation of China (Grant Nos.: 81870439, 82070666, 31900644, and 81973322), Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province, Jiangsu Province Recruitment Plan for High-level, Innovative and Entrepreneurial Talents (Innovative Research Team), Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, the Fundamental Research Funds for the Central Universities (Grant Nos.: 81870439 and JUSRP22007), National First-Class Discipline Program of Food Science and Technology (Grant No.: JUFSTR20180103), Wuxi Social Development Funds for International Science & Technology Cooperation (Grant No.: WX0303B010518180007PB), Jiangsu Province Qing Lan Project, Jiangsu Province “Six Summit Talents” Program (Grant No.: 2019-YY-038) and Wuxi Taihu talent plan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, Ll., Li, Bb., Pan, Xh. et al. Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin (2020). https://doi.org/10.1038/s41401-020-00532-0

Download citation

Keywords

  • gut microbiota
  • pancreatic diseases
  • type 1 diabetes
  • acute pancreatitis
  • chronic pancreatitis
  • pancreatic cancer

Search

Quick links