Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead

Abstract

Ion channels are the third largest class of targets for therapeutic drugs. The pharmacology of ion channels is an important research area for identifying new treatment options for human diseases. The past decade or so has seen increasing interest in an ion channel protein belonging to the transient receptor potential (TRP) family, namely the melastatin subfamily member 7 (TRPM7), as an emerging drug target. TRPM7 is a bifunctional protein with a magnesium and calcium-conducting divalent ion channel fused with an active kinase domain. TRPM7 is ubiquitously expressed in human tissues, including the brain, and regulates various cell biology processes such as magnesium and calcium homeostasis, cell growth and proliferation, and embryonic development. TRPM7 provides a link between cellular metabolic status and intracellular calcium homeostasis in neurons due to TRPM7’s unique sensitivity to fluctuating intracellular Mg·ATP levels. Thus, the protein plays a key role in ischemic and hypoxic neuronal cell death and brain injury, and is one of the key nonglutamate mechanisms in cerebral ischemia and stroke. Currently, the most potent and specific TRPM7 inhibitor is waixenicin A, a xenicane diterpenoid from the Hawaiian soft coral Sarcothelia edmondsoni. Using waixenicin A as a pharmacological tool, we demonstrated that TRPM7 is involved in promoting neurite outgrowth in vitro. Most recently, we found that waixenicin A reduced hypoxic–ischemic brain injury and preserved long-term behavioral outcomes in mouse neonates. We here suggest that TRPM7 is an emerging drug target for CNS diseases and disorders, and waixenicin A is a viable drug lead for these disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Dabrowski MA, Dekermendjian K, Lund PE, Krupp JJ, Sinclair J, Larsson O. Ion channel screening technology. Cns Neurol Disord Drug Targets. 2008;7:122–8.

    CAS  PubMed  Google Scholar 

  2. 2.

    Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, et al. Ion channels as therapeutic targets: a drug discovery perspective. J Med Chem. 2013;56:593–624.

    CAS  PubMed  Google Scholar 

  3. 3.

    Waszkielewicz AM, Gunia A, Szkaradek N, Sloczynska K, Krupinska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem. 2013;20:1241–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Yu HB, Li M, Wang WP, Wang XL. High throughput screening technologies for ion channels. Acta Pharmacol Sin. 2016;37:34–43.

    CAS  PubMed  Google Scholar 

  5. 5.

    Kaczorowski GJ, McManus OB, Priest BT, Garcia ML. Ion channels as drug targets: the next GPCRs,. J Gen Physiol. 2008;131:399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Carnero A. High throughput screening in drug discovery. Clin Transl Oncol. 2006;8:482–90.

    CAS  PubMed  Google Scholar 

  7. 7.

    Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16:19–34.

    CAS  PubMed  Google Scholar 

  8. 8.

    Penner R, Fasolato C, Hoth M. Calcium influx and its control by calcium release. Curr Opin Neurobiol. 1993;3:368–74.

    CAS  PubMed  Google Scholar 

  9. 9.

    De LF, Geppetti P. Ion channel pharmacology for pain modulation. Handb Exp Pharmacol. 2019;260:161–86.

    Google Scholar 

  10. 10.

    Ashcroft FM. The Walter B. Cannon Physiology in Perspective Lecture, 2007. ATP-sensitive K+ channels and disease: from molecule to malady. Am J Physiol Endocrinol Metab. 2007;293:E880–E889.

    CAS  PubMed  Google Scholar 

  11. 11.

    Zaydman MA, Silva JR, Cui J. Ion channel associated diseases: overview of molecular mechanisms. Chem Rev. 2012;112:6319–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    WHO. WHO: the top 10 causes of death. WHO; 2016. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

  13. 13.

    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–e60.

    PubMed  Google Scholar 

  14. 14.

    Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.

    CAS  PubMed  Google Scholar 

  15. 15.

    Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.

    CAS  PubMed  Google Scholar 

  16. 16.

    Zivin JA. Acute stroke therapy with tissue plasminogen activator (tPA) since it was approved by the U.S. Food and Drug Administration (FDA). Ann Neurol. 2009;66:6–10.

    PubMed  Google Scholar 

  17. 17.

    Stroke. 2000. http://www.strokeassociation.org/STROKEORG/AboutStroke/About-Stroke_UCM_308529_SubHomePage.jsp.

  18. 18.

    Nelson KB, Lynch JK. Stroke in newborn infants. Lancet Neurol. 2004;3:150–8.

    PubMed  Google Scholar 

  19. 19.

    Vannucci RC. Hypoxic-ischemic encephalopathy. Am J Perinatol. 2000;17:113–20.

    CAS  PubMed  Google Scholar 

  20. 20.

    Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353:1574–84.

    CAS  PubMed  Google Scholar 

  21. 21.

    Tymianski M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci. 2011;14:1369–73.

    CAS  PubMed  Google Scholar 

  22. 22.

    Besancon E, Guo S, Lok J, Tymianski M, Lo EH. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci. 2008;29:268–75.

    CAS  PubMed  Google Scholar 

  23. 23.

    Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, et al. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke. 2000;31:347–54.

    CAS  PubMed  Google Scholar 

  24. 24.

    Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30:2752–8.

    Google Scholar 

  25. 25.

    Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, et al. Neuronal KATP channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol. 2015;263:161–71.

    CAS  PubMed  Google Scholar 

  26. 26.

    Sun HS, Feng ZP, Miki T, Seino S, French RJ. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophysiol. 2006;95:2590–601.

    CAS  PubMed  Google Scholar 

  27. 27.

    Sun HS, Feng ZP, Barber PA, Buchan AM, French RJ. Kir6.2-containing ATP-sensitive potassium channels protect cortical neurons from ischemic/anoxic injury in vitro and in vivo. Neuroscience. 2007;144:1509–15.

    CAS  PubMed  Google Scholar 

  28. 28.

    Liu R, Wang H, Xu B, Chen W, Turlova E, Dong N, et al. Cerebrovascular safety of sulfonylureas: the role of KATP channels in neuroprotection and the risk of stroke in patients with type 2 diabetes. Diabetes. 2016;65:2795–809.

    CAS  PubMed  Google Scholar 

  29. 29.

    Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, et al. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci. 2009;12:1300–7.

    CAS  PubMed  Google Scholar 

  30. 30.

    Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, et al. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain. 2015;8:11.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Alim I, Teves L, Li R, Mori Y, Tymianski M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci. 2013;33:17264–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Alibrahim A, Zhao LY, Bae CY, Barszczyk A, Sun CLF, Wang GL, et al. Neuroprotective effects of volume-regulated anion channel blocker DCPIB on neonatal hypoxic-ischemic injury. Acta Pharmacol Sin. 2013;34:113–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.

    CAS  PubMed  Google Scholar 

  34. 34.

    Thompson RJ, Zhou N, MacVicar BA. Ischemia opens neuronal gap junction hemichannels. Science. 2006;312:924–7.

    CAS  PubMed  Google Scholar 

  35. 35.

    Pignataro G, Tortiglione A, Scorziello A, Giaccio L, Secondo A, Severino B, et al. Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology. 2004;46:439–48.

    CAS  PubMed  Google Scholar 

  36. 36.

    Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug discovery on natural products: from ion channels to nAChRs, from nature to libraries, from analytics to assays. SLAS Discov. 2019;24:362–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975;258:84–7.

    CAS  PubMed  Google Scholar 

  39. 39.

    Montell C, Rubin GM. The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell. 1988;52:757–72.

    CAS  PubMed  Google Scholar 

  40. 40.

    Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2:1313–23.

    CAS  PubMed  Google Scholar 

  41. 41.

    Clapham DE. TRP channels as cellular sensors. Nature. 2003;426:517–24.

    CAS  PubMed  Google Scholar 

  42. 42.

    Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233–52.

    CAS  PubMed  Google Scholar 

  43. 43.

    Wu LJ, Sweet TB, Clapham DE. International union of basic and clinical pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev. 2010;62:381–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.

    CAS  PubMed  Google Scholar 

  45. 45.

    Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science. 2001;291:1043–7.

    CAS  PubMed  Google Scholar 

  46. 46.

    Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol. 2003;121:49–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Penner R, Fleig A. The Mg2+ and Mg2+-nucleotide-regulated channel-kinase TRPM7. Handb Exp Pharmacol. 2007;179:313–28.

    CAS  Google Scholar 

  48. 48.

    Demeuse P, Penner R, Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol. 2006;127:421–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA. 2004;101:6009–14.

    CAS  PubMed  Google Scholar 

  50. 50.

    Jiang J, Li M, Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol. 2005;126:137–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW, et al. Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J Biol Chem. 2007;282:25817–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Bessac BF, Fleig A. TRPM7 channel is sensitive to osmotic gradients in human kidney cells. J Physiol. 2007;582:1073–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Yu H, Zhang Z, Lis A, Penner R, Fleig A. TRPM7 is regulated by halides through its kinase domain. Cell Mol Life Sci. 2013;70:2757–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell. 2003;114:191–200.

    CAS  PubMed  Google Scholar 

  55. 55.

    Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, et al. TRPM7 is essential for Mg2+ homeostasis in mammals. Nat Commun. 2010;1:109.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Inoue K, Xiong ZG. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res. 2009;83:547–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Chen HC, Xie J, Zhang Z, Su LT, Yue L, Runnels LW. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase. PLoS ONE. 2010;5:e11161.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, et al. TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem. 2006;281:11260–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322:756–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, et al. Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol. 2005;15:667–71.

    CAS  PubMed  Google Scholar 

  61. 61.

    Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115:863–77.

    CAS  PubMed  Google Scholar 

  62. 62.

    Rehncrona S. Brain acidosis. Ann Emerg Med. 1985;14:770–6.

    CAS  PubMed  Google Scholar 

  63. 63.

    Turlova E, Bae CY, Deurloo M, Chen W, Barszczyk A, Horgen FD, et al. TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons. Mol Neurobiol. 2016;53:595–610.

    CAS  PubMed  Google Scholar 

  64. 64.

    Xiao AJ, Chen W, Xu B, Liu R, Turlova E, Barszczyk A, et al. Marine compound xyloketal B reduces neonatal hypoxic-ischemic brain injury. Mar Drugs. 2015;13:29–47.

    Google Scholar 

  65. 65.

    Pan N, Lu LY, Li M, Wang GH, Sun FY, Sun HS, et al. Xyloketal B alleviates cerebral infarction and neurologic deficits in a mouse stroke model by suppressing the ROS/TLR4/NF-kappaB inflammatory signaling pathway. Acta Pharmacol Sin 2017;38:1236–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Turlova E, Wong R, Xu B, Li F, Du L, Habbous S, et al. TRPM7 mediates neuronal cell death upstream of calcium/calmodulin-dependent protein kinase II and calcineurin mechanism in neonatal hypoxic-ischemic brain injury. Transl Stroke Res. 2020. https://doi.org/10.1007/s12975-020-00810-3.

  67. 67.

    Gotru SK, Chen W, Kraft P, Becker IC, Wolf K, Stritt S, et al. TRPM7 kinase controls calcium responses in arterial thrombosis and stroke in mice. Arterioscler Thromb Vasc Biol. 2018;38:344–52.

    CAS  PubMed  Google Scholar 

  68. 68.

    Faouzi M, Kilch T, Horgen FD, Fleig A, Penner R. The TRPM7 channel kinase regulates store-operated calcium entry. J Physiol. 2017;595:3165–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Beesetty P, Wieczerzak KB, Gibson JN, Kaitsuka T, Luu CT, Matsushita M, et al. Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T-cell proliferation and diminished store-operated calcium entry. Sci Rep. 2018;8:3023.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Chen WL, Barszczyk A, Turlova E, Deurloo M, Liu B, Yang BB, et al. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget. 2015;6:16321–40.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Chen WL, Turlova E, Sun CL, Kim JS, Huang S, Zhong X, et al. Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ERK signaling pathways. Mar Drugs. 2015;13:2505–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Chubanov V, Schafer S, Ferioli S, Gudermann T. Natural and synthetic modulators of the TRPM7 channel. Cells. 2014;3:1089–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Zierler S, Yao G, Zhang Z, Kuo WC, Porzgen P, Penner R, et al. Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem. 2011;286:39328–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Huang J, Furuya H, Faouzi M, Zhang Z, Monteilh-Zoller M, Kawabata KG, et al. Inhibition of TRPM7 suppresses cell proliferation of colon adenocarcinoma in vitro and induces hypomagnesemia in vivo without affecting azoxymethane-induced early colon cancer in mice. Cell Commun Signal. 2017;15:30.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jansen C, Sahni J, Suzuki S, Horgen FD, Penner R, Fleig A. The coiled-coil domain of zebrafish TRPM7 regulates Mg nucleotide sensitivity. Sci Rep. 2016;6:33459.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Sisquella X, Nebl T, Thompson JK, Whitehead L, Malpede BM, Salinas ND, et al. Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion. Elife. 2017;6:e21083.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Liu H, Dilger JP, Lin J. The role of transient receptor potential melastatin 7 (TRPM7) in cell viability: a potential target to suppress breast cancer cell cycle. Cancers. 2020;12:131.

    CAS  PubMed Central  Google Scholar 

  78. 78.

    Visser D, Langeslag M, Kedziora KM, Klarenbeek J, Kamermans A, Horgen FD, et al. TRPM7 triggers Ca2+ sparks and invadosome formation in neuroblastoma cells. Cell Calcium. 2013;54:404–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Huang Y, Leng TD, Inoue K, Yang T, Liu M, Horgen FD, et al. TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem. 2018;293:14393–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Wager TT, Hou X, Verhoest PR, Villalobos A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci. 2010;1:435–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Ek CJ, D’Angelo B, Baburamani AA, Lehner C, Leverin AL, Smith PL, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 2015;35:818–27.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper was supported by the following grants: NIH NIGMS P20 (GM103466) to FDH; DR acknowledges support by Baylor University for start-up funds to initiate this project and partial support by NIH NIGMS MERIT (GM052964) and MIRA (GM134910); Hamamatsu/Queen’s PET Imaging, LLC to AF; Canadian Institutes of Health Research (CIHR PJT-153155) to ZPF; Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants (RGPIN-2016-04574) to HSS.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hong-Shuo Sun or Zhong-Ping Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, HS., Horgen, F.D., Romo, D. et al. Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacol Sin 41, 1519–1524 (2020). https://doi.org/10.1038/s41401-020-00512-4

Download citation

Keywords

  • ion channels
  • TRPM7
  • Waixenicin A
  • hypoxic–ischemic brain injury
  • stroke
  • neuroprotection
  • drug development

Search