Review Article | Published:

Translational potential of allosteric modulators targeting the cannabinoid CB1 receptor

Acta Pharmacologica Sinicavolume 40pages324335 (2019) | Download Citation

Subjects

Abstract

The cannabinoid type-1 (CB1) receptor, a G-protein-coupled receptor, is an attractive target for drug discovery due to its involvement in many physiological processes. Historically, drug discovery efforts targeting the CB1 receptor have focused on the development of orthosteric ligands that interact with the active site to which endogenous cannabinoids bind. Research performed over the last several decades has revealed substantial difficulties in translating CB1 orthosteric ligands into druggable candidates. The difficulty is mainly due to the adverse effects associated with orthosteric CB1 ligands. Recent discoveries of allosteric CB1 modulators provide tremendous opportunities to develop CB1 ligands with novel mechanisms of action; these ligands may potentially improve the pharmacological effects and enhance drug safety in treating the disorders by regulating the functions of the CB1 receptor. In this paper, we review and summarize the complex pharmacological profiles of each class of CB1 allosteric modulators, the development of new classes of CB1 allosteric modulators and the results from in vivo assessments of their therapeutic value.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58:389–462.

  2. 2.

    Howlett A. Cannabinoid receptor signaling. In: Pertwee R, Editor. Cannabinoids. Berlin, Heidelberg: Springer; 2005. p. 53–79.

  3. 3.

    Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology. 2004;47:345–58.

  4. 4.

    Mackie K. Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol. 2006;46:101–22.

  5. 5.

    Grotenhermen F, Müller-Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int. 2012;109:495–501.

  6. 6.

    Cridge BJ, Rosengren RJ. Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag Res. 2013;5:301–13.

  7. 7.

    Dhopeshwarkar A, Mackie K. CB2 Cannabinoid receptors as a therapeutic target—what does the future hold? Mol Pharmacol. 2014;86:430–7.

  8. 8.

    Atwood BK, Straiker A, Mackie K. CB2: therapeutic target-in-waiting. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;38:16–20.

  9. 9.

    Yang P, Wang L, Xie XQ. Latest advances in novel cannabinoid CB2 ligands for drug abuse and their therapeutic potential. Future Med Chem. 2012;4:187–204.

  10. 10.

    Han S, Thatte J, Buzard DJ, Jones RM. Therapeutic utility of cannabinoid receptor type 2 (CB2) selective agonists. J Med Chem. 2013;56:8224–56.

  11. 11.

    Janero DR, Makriyannis A. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerg Drugs. 2009;14:43–65.

  12. 12.

    Pertwee RG. Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci. 2005;76:1307–24.

  13. 13.

    Kunos G, Osei-Hyiaman D, Bátkai S, Sharkey KA, Makriyannis A. Should peripheral CB1 cannabinoid receptors be selectively targeted for therapeutic gain? Trends Pharmacol Sci. 2009;30:1–7.

  14. 14.

    Christopoulos A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov. 2002;1:198–210.

  15. 15.

    Ross R. Tuning the endocannabinoid system: allosteric modulators of the CB1 receptor. Br J Pharmacol. 2007;152:565–6.

  16. 16.

    Mackie K Distribution of cannabinoid receptors in the central and peripheral nervous system. In: Cannabinoids. Springer, Berlin; 2005. p. 299–325.

  17. 17.

    Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74:129–80.

  18. 18.

    Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20:10–4.

  19. 19.

    Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3:771–84.

  20. 20.

    Rodriguez de Fonseca F, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M. The endocannabinoid system: physiology and pharmacology. Alcohol Alcohol. 2005;40:2–14.

  21. 21.

    Cluny N, Vemuri V, Chambers A, Limebeer C, Bedard H, Wood J, et al. A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br J Pharmacol. 2010;161:629–42.

  22. 22.

    Turu G, Hunyady L. Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol. 2010;44:75–85.

  23. 23.

    Howlett AC, Blume LC, Dalton GD. CB1 cannabinoid receptors and their associated proteins. Curr Med Chem. 2010;17:1382–93.

  24. 24.

    Smith TH, Sim-Selley LJ, Selley DE. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br J Pharmacol. 2010;160:454–66.

  25. 25.

    Blume LC, Patten T, Eldeeb K, Leone-Kabler S, Ilyasov AA, Keegan BM, et al. Cannabinoid Receptor Interacting Protein (CRIP) 1a competition with β-arrestin for CB1 receptor binding sites. Mol Pharmacol. 2017;91:75–86.

  26. 26.

    Smith TH, Blume LC, Straiker A, Cox JO, David BG, McVoy JS, et al. Cannabinoid receptor interacting protein 1a (CRIP1a) modulates CB1 receptor signaling and regulation. Mol Pharmacol. 2015;87:747–65.

  27. 27.

    Velasco G, Galve-Roperh I, Sanchez C, Blazquez C, Haro A, Guzman M. Cannabinoids and ceramide: two lipids acting hand-by-hand. Life Sci. 2005;77:1723–31.

  28. 28.

    Nogueras-Ortiz C, Yudowski GA. The multiple waves of cannabinoid 1 receptor signaling. Mol Pharmacol. 2016;90:620–6.

  29. 29.

    Ibsen MS, Connor M, Glass M. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res. 2017;2:48–60.

  30. 30.

    Bosier B, Muccioli GG, Hermans E, Lambert DM. Functionally selective cannabinoid receptor signalling: therapeutic implications and opportunities. Biochem Pharmacol. 2010;80:1–12.

  31. 31.

    Varga E, Georgieva T, Tumati S, Alves I, Salamon Z, Tollin G, et al. Functional selectivity in cannabinoid signaling. Curr Mol Pharmacol. 2008;1:273–84.

  32. 32.

    Mallipeddi S, Janero DR, Zvonok N, Makriyannis A. Functional selectivity at G-protein coupled receptors: Advancing cannabinoid receptors as drug targets. Biochem Pharmacol. 2017;128:1–11.

  33. 33.

    Kenakin T. Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther. 2011;336:296–302.

  34. 34.

    Urban JD, Clarke WP, Von Zastrow M, Nichols DE, Kobilka B, Weinstein H, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007;320:1–13.

  35. 35.

    Vaidehi N, Kenakin T. The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharm. 2010;10:775–81.

  36. 36.

    Glass M, Northup JK. Agonist selective regulation of G proteins by cannabinoid CB1 and CB2 receptors. Mol Pharmacol. 1999;56:1362–9.

  37. 37.

    Laprairie RB, Bagher AM, Kelly ME, Dupré DJ, Denovan-Wright EM. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J Biol Chem. 2014;289:24845–62.

  38. 38.

    Lauckner JE, Hille B, Mackie K. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA. 2005;102:19144–9.

  39. 39.

    Khoury E, Clément S, Laporte SA. Allosteric and biased G protein-coupled receptor signaling regulation: potentials for new therapeutics. Front Endocrinol (Lausanne). 2014;5:68.

  40. 40.

    Grover AK. Use of allosteric targets in the discovery of safer drugs. Med Princ Pract. 2013;22:418–26.

  41. 41.

    Foster DJ, Conn PJ. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron. 2017;94:431–46.

  42. 42.

    Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, et al. Crystal structures of agonist-bound human cannabinoid receptor CB 1. Nature. 2017;547:468–71.

  43. 43.

    Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, et al. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature. 2016;540:602–6.

  44. 44.

    Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, et al. Crystal structure of the human cannabinoid receptor CB 1. Cell. 2016;167:750–62. e14

  45. 45.

    Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, Goodwin R, et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol. 2005;68:1484–95.

  46. 46.

    Horswill J, Bali U, Shaaban S, Keily J, Jeevaratnam P, Babbs A, et al. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol. 2007;152:805–14.

  47. 47.

    Navarro HA, Howard JL, Pollard GT, Carroll F. Positive allosteric modulation of the human cannabinoid (CB1) receptor by RTI-371, a selective inhibitor of the dopamine transporter. Br J Pharmacol. 2009;156:1178–84.

  48. 48.

    Ignatowska-Jankowska BM, Baillie GL, Kinsey S, Crowe M, Ghosh S, Owens RA, et al. A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology. 2015;40:2948–59.

  49. 49.

    Pamplona FA, Ferreira J, de Lima OM, Duarte FS, Bento AF, Forner S, et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci USA. 2012;109:21134–9.

  50. 50.

    Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S, Martin-Garcia E, et al. Pregnenolone can protect the brain from cannabis intoxication. Science. 2014;343:94–8.

  51. 51.

    Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B, et al. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem. 2012;287:36944–67.

  52. 52.

    Ahn KH, Mahmoud MM, Shim JY, Kendall DA. Distinct roles of β-arrestin 1 and β-arrestin 2 in ORG27569-induced biased signaling and internalization of the cannabinoid receptor 1 (CB1). J Biol Chem. 2013;288:9790–800.

  53. 53.

    Baillie GL, Horswill J, Anavi-Goffer S, Reggio PH, Abood ME, Bolognini D, et al. CB1 receptor allosteric modulators display both agonist and signaling pathway specificity. Mol Pharmacol. 2012;83:322–38.

  54. 54.

    Gamage TF, Farquhar CE, Lefever TW, Thomas BF, Nguyen T, Zhang Y, et al. The great divide: separation between in vitro and in vivo effects of PSNCBAM-based CB1 receptor allosteric modulators. Neuropharmacology. 2017;125:365–75.

  55. 55.

    Khurana L, Fu BQ, Duddupudi AL, Liao YH, Immadi SS, Kendall DA, et al. Pyrimidinyl biphenylureas: identification of new lead compounds as allosteric modulators of the cannabinoid receptor CB1. J Med Chem. 2017;60:1089–104.

  56. 56.

    Ahn KH, Mahmoud MM, Kendall DA. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J Biol Chem. 2012;287:12070–82.

  57. 57.

    Khajehali E, Malone DT, Glass M, Sexton PM, Christopoulos A, Leach K. Biased agonism and biased allosteric modulation at the CB1 cannabinoid receptor. Mol Pharmacol. 2015;88:368–79.

  58. 58.

    Wang X, Horswill JG, Whalley BJ, Stephens GJ. Effects of the allosteric antagonist 1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl) phenyl] urea (PSNCBAM-1) on CB1 receptor modulation in the cerebellum. Mol Pharmacol. 2011;79:758–67.

  59. 59.

    Cawston EE, Redmond WJ, Breen CM, Grimsey NL, Connor M, Glass M. Real-time characterization of cannabinoid receptor 1 (CB1) allosteric modulators reveals novel mechanism of action. Br J Pharmacol. 2013;170:893–907.

  60. 60.

    Gamage TF, Anderson JC, Abood ME. CB1 allosteric modulator Org27569 is an antagonist/inverse agonist of ERK1/2 signaling. Cannabis Cannabinoid Res. 2016;1:272–80.

  61. 61.

    Nguyen T, Li JX, Thomas BF, Wiley JL, Kenakin TP, Zhang Y. Allosteric modulation: an alternate approach targeting the cannabinoid CB1 receptor. Med Res Rev. 2017;37:441–74.

  62. 62.

    Gomes I, Grushko JS, Golebiewska U, Hoogendoorn S, Gupta A, Heimann AS, et al. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 2009;23:3020–9.

  63. 63.

    Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther. 2017;175:133–50.

  64. 64.

    Morales P, Reggio PH, Jagerovic N. An overview on medicinal chemistry of synthetic and natural derivatives of cannabidiol. Front Pharmacol. 2017;8:422.

  65. 65.

    Morales P, Hurst DP, Reggio PH. Molecular targets of the phytocannabinoids: a complex picture. In: Phytocannabinoids. Springer, Berlin; 2017. p. 103–31.

  66. 66.

    Turner SE, Williams CM, Iversen L, Whalley BJ. Molecular pharmacology of phytocannabinoids. In: Phytocannabinoids. (Springer, 2017), p 61–101.

  67. 67.

    Laprairie R, Bagher A, Kelly M, Denovan-Wright E. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015;172:4790–805.

  68. 68.

    Pistis M, O’Sullivan SE. The role of nuclear hormone receptors in cannabinoid function. Adv Pharmacol. 2017; 80:291–328.

  69. 69.

    Priestley RS, Nickolls SA, Alexander SP, Kendall DA. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB J. 2015;29:1446–55.

  70. 70.

    Ahn KH, Mahmoud MM, Samala S, Lu D, Kendall DA. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor. J Neurochem. 2013;124:584–9.

  71. 71.

    Piscitelli F, Ligresti A, La Regina G, Coluccia A, Morera L, Allarà M, et al. Indole-2-carboxamides as allosteric modulators of the cannabinoid CB1 receptor. J Med Chem. 2012;55:5627–31.

  72. 72.

    Mahmoud MM, Ali HI, Ahn KH, Damaraju A, Samala S, Pulipati VK, et al. Structure–activity relationship study of indole-2-carboxamides identifies a potent allosteric modulator for the cannabinoid receptor 1 (CB1). J Med Chem. 2013;56:7965–75.

  73. 73.

    Nguyen T, German N, Decker AM, Li JX, Wiley JL, Thomas BF, et al. Structure–activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators. Biorg. Med Chem. 2015;23:2195–203.

  74. 74.

    Khurana L, Ali HI, Olszewska T, Ahn KH, Damaraju A, Kendall DA, et al. Optimization of chemical functionalities of indole-2-carboxamides to improve allosteric parameters for the cannabinoid receptor 1 (CB1). J Med Chem. 2014;57:3040–52.

  75. 75.

    Cawston EE, Connor M, Di Marzo V, Silvestri R, Glass M. Distinct temporal fingerprint for cyclic adenosine monophosphate (cAMP) signaling of indole-2-carboxamides as allosteric modulators of the cannabinoid receptors. J Med Chem. 2015;58:5979–88.

  76. 76.

    Kulkarni PM, Kulkarni AR, Korde A, Tichkule RB, Laprairie RB, Denovan-Wright EM, et al. Novel electrophilic and photoaffinity covalent probes for mapping the cannabinoid 1 receptor allosteric site (s). J Med Chem. 2015;59:44–60.

  77. 77.

    Hernandez-Folgado L, Stevenson LA, Morales P, Gómez-Cañas M, Pazos MR, Cascio MG, et al. Exploring the benzimidazole ring as a substitution for indole in cannabinoid allosteric modulators. cannabis and cannabinoid. Research. 2016;1:196–201.

  78. 78.

    German N, Decker AM, Gilmour BP, Gay EA, Wiley JL, Thomas BF, et al. Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure–activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl) pyridin-2-yl] phenyl} urea (PSNCBAM-1). J Med Chem. 2014;57:7758–69.

  79. 79.

    Bertini S, Chicca A, Gado F, Arena C, Nieri D, Digiacomo M, et al. Novel analogs of PSNCBAM-1 as allosteric modulators of cannabinoid CB1 receptor. Biorg Med Chem. 2017;25:6427–34.

  80. 80.

    Laprairie RB, Kulkarni PM, Deschamps JR, Kelly ME, Janero DR, Cascio MG, et al. Enantiospecific allosteric modulation of cannabinoid 1 receptor. ACS Chem Neurosci. 2017;8:1188–203.

  81. 81.

    Mitjavila J, Yin D, Kulkarni PM, Zanato C, Thakur GA, Ross R, et al. Enantiomer-specific positive allosteric modulation of CB1 signaling in autaptic hippocampal neurons. Pharmacol Res. 2017;129:475–81.

  82. 82.

    Saleh N, Hucke O, Kramer G, Schmidt E, Montel F, Lipinski R, et al. Multiple binding sites contribute to the mechanism of mixed agonistic and positive allosteric modulators of the cannabinoid CB1 receptor. Angew Chem. 2018;130:2610–5.

  83. 83.

    Thakur GA. Kulkarni PM Allosteric modulators of CB1 cannabinoid receptors. Patent application WO2013103967, 2017.

  84. 84.

    Ruth R, Greig I, Zanda M, Tseng CC Cannabinoid type 1 receptor modulators. Patent application, WO2016029310, 2018.

  85. 85.

    Ramírez BG, Blázquez C, del Pulgar TG, Guzmán M, de Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci. 2005;25:1904–13.

  86. 86.

    Van der Stelt M, Mazzola C, Esposito G, Matias I, Petrosino S, De Filippis D, et al. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci CMLS. 2006;63:1410–24.

  87. 87.

    Slivicki RA, Xu Z, Kulkarni PM, Pertwee RG, Mackie K, Thakur GA, et al. Positive allosteric modulation of cannabinoid receptor type 1 suppresses pathological pain without producing tolerance or dependence. Biol Psychiatry. 2017;17:31761–4.

  88. 88.

    Cairns EA, Szczesniak A-M, Straiker AJ, Kulkarni PM, Pertwee RG, Thakur GA, et al. The in vivo effects of the CB1-positive allosteric modulator GAT229 on intraocular pressure in ocular normotensive and hypertensive mice. J Ocul Pharmacol Ther. 2017;33:582–90.

  89. 89.

    Lu D, Dopart R, Kendall DA. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes. Cell Stress Chaperon-. 2016;21:1–7.

  90. 90.

    Gamage TF, Ignatowska-Jankowska BM, Wiley JL, Abdelrahman M, Trembleau L, Greig IR, et al. In vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org27569. Behav Pharmacol. 2014;25:182–5.

  91. 91.

    Ding Y, Qiu Y, Jing L, Thorn DA, Zhang Y, Li JX. Behavioral effects of the cannabinoid CB1 receptor allosteric modulator ORG27569 in rats. Pharmacol Res Perspect. 2014;2:1–11. e000069

  92. 92.

    Jing L, Qiu Y, Zhang Y, Li J-X. Effects of the cannabinoid CB1 receptor allosteric modulator ORG 27569 on reinstatement of cocaine-and methamphetamine-seeking behavior in rats. Drug Alcohol Depend. 2014;143:251–6.

  93. 93.

    Straiker A, Mitjavila J, Yin D, Gibson A, Mackie K. Aiming for allosterism: evaluation of allosteric modulators of CB1 in a neuronal model. Pharmacol Res. 2015;99:370–6.

  94. 94.

    Busquets-Garcia A, Soria-Gómez E, Redon B, Mackenbach Y, Vallee M, Chaouloff F, et al. Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice. Mol Psychiatry. 2017;22:1594–603.

  95. 95.

    Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev. 2010;62:265–304.

Download references

Acknowledgements

This work was partially supported by NIH Grant DA039942. The authors thank Mrs. Michelle Walbeck for assisting with the revision of this manuscript.

Author information

Affiliations

  1. Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA

    • Dai Lu
    • , Sri Sujana Immadi
    •  & Zhixing Wu
  2. Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA

    • Debra A. Kendall

Authors

  1. Search for Dai Lu in:

  2. Search for Sri Sujana Immadi in:

  3. Search for Zhixing Wu in:

  4. Search for Debra A. Kendall in:

Conflict of interest

The authors declare no competing interests.

Corresponding author

Correspondence to Dai Lu.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41401-018-0164-x