Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequencing of genes of drug response in tumor DNA and implications for precision medicine in cancer patients

Abstract

Tumor DNA sequencing is becoming standard-of-care for patient treatment decisions. We evaluated genotype concordance between tumor DNA and genomic DNA from blood and catalogued functional effects of somatic mutations in 21 drug response genes in 752 solid tumor patients. Using a threshold of 10% difference between tumor and blood DNA variant allele fraction (VAF), concordance for heterogenous genotype calls was 78% and increased to 97.5% using a 30% VAF threshold. Somatic mutations were observed in all 21 drug response genes, and 44% of patients had at least one somatic mutation in these genes. In tumor DNA, eight patients had a frameshift mutation in CYP2C8, which metabolizes taxanes. Overall, somatic copy number losses were more frequent than gains, including for CYP2C19 and CYP2D6 which had the most frequent copy number losses. However, copy number gains in TPMT were more than four times as common as losses. Seven % of patients had copy number gains in ABCB1, a multidrug resistance transporter of anti-cancer agents. These results demonstrate tumor-only DNA sequencing might not be reliable to call germline genotypes of drug response variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concordance in genotype calling between tumor and blood DNA for variants in genes of drug response.
Fig. 2: Somatic mutations and CNAs within genes of drug response in cancer patients.
Fig. 3: Somatic mutations (N = 65) occurring in more than one tumor.

Similar content being viewed by others

Data availability

Sequencing data is available in dbGaP (accession number: phs001713.v1.p.1).

Code availability

Available upon request.

References

  1. Gillis NK, Patel JN, Innocenti F. Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era. Clin Pharm Ther. 2014;95:269–80.

    Article  CAS  Google Scholar 

  2. Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7:283ra53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raymond VM, Gray SW, Roychowdhury S, Joffe S, Chinnaiyan AM, Parsons DW, et al. Germline findings in tumor-only sequencing: points to consider for clinicians and laboratories. J Natl Cancer Inst. 2016;108:djv351.

    Article  PubMed  Google Scholar 

  4. Cummings J, Ethell BT, Jardine L, Burchell B. Glucuronidation of SN-38 and NU/ICRF 505 in human colon cancer and adjacent normal colon. Anticancer Res. 2006;26:2189–96.

    CAS  PubMed  Google Scholar 

  5. DeLoia JA, Zamboni WC, Jones JM, Strychor S, Kelley JL, Gallion HH. Expression and activity of taxane-metobolizing enzymes in ovarian tumors. Gynecol Oncol. 2008;108:355–60.

    Article  CAS  PubMed  Google Scholar 

  6. Fujitaka K, Oguri T, Isobe T, Fujiwara Y, Kohno N. Induction of cytochrome P450 3A4 by docetaxel in peripheral mononuclear cells and its expression in lung cancer. Cancer Chemother Pharm. 2001;48:42–6.

    Article  CAS  Google Scholar 

  7. Fukui Y, Oka T, Nagayama S, Danenberg PV, Danenberg KD, Fukushima M. Thymidylate synthase, dihydropyrimidine dehydrogenase, orotate phosphoribosyltransferase mRNA and protein expression levels in solid tumors in large scale population analysis. Int J Mol Med. 2008;22:709–16.

    CAS  PubMed  Google Scholar 

  8. Fukushima M, Morita M, Ikeda K, Nagayama S. Population study of expression of thymidylate synthase and dihydropyrimidine dehydrogenase in patients with solid tumors. Int J Mol Med. 2003;12:839–44.

    CAS  PubMed  Google Scholar 

  9. Knüpfer H, Schmidt R, Stanitz D, Brauckhoff M, Schönfelder M, Preiss R. CYP2C and IL-6 expression in breast cancer. Breast. 2004;13:28–34.

    Article  PubMed  Google Scholar 

  10. Martínez C, García-Martín E, Pizarro RM, García-Gamito FJ, Agúndez JAG. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy. Br J Cancer. 2002;87:681–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer. 2002;97:129–32.

    Article  CAS  PubMed  Google Scholar 

  12. Veneroni S, Zaffaroni N, Daidone MG, Benini E, Villa R, Silvestrini R. Expression of P-glycoprotein and in vitro or in vivo resistance to doxorubicin and cisplatin in breast and ovarian cancers. Eur J Cancer. 1994;30a:1002–7.

    Article  CAS  PubMed  Google Scholar 

  13. Weiss JR, Baer MR, Ambrosone CB, Blanco JG, Hutson A, Ford LA, et al. Concordance of pharmacogenetic polymorphisms in tumor and germ line DNA in adult patients with acute myeloid leukemia. Cancer Epidemiol Biomark Prev. 2007;16:1038–41.

    Article  CAS  Google Scholar 

  14. Hertz DL, Kidwell KM, Thibert JN, Gersch C, Regan MM, Skaar TC, et al. Genotyping concordance in DNA extracted from formalin-fixed paraffin embedded (FFPE) breast tumor and whole blood for pharmacogenetic analyses. Mol Oncol. 2015;9:1868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang S, Tan IB, Sapari NS, Grabsch HI, Okines A, Smyth EC, et al. Technical reproducibility of single-nucleotide and size-based DNA biomarker assessment using DNA extracted from formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2015;17:242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vos HI, van der Straaten T, Coenen MJ, Flucke U, te Loo DM, Guchelaar HJ. High-quality genotyping data from formalin-fixed, paraffin-embedded tissue on the drug metabolizing enzymes and transporters plus array. J Mol Diagn. 2015;17:4–9.

    Article  CAS  PubMed  Google Scholar 

  17. Rae JM, Cordero KE, Scheys JO, Lippman ME, Flockhart DA, Johnson MD. Genotyping for polymorphic drug metabolizing enzymes from paraffin-embedded and immunohistochemically stained tumor samples. Pharmacogenetics. 2003;13:501–7.

    Article  CAS  PubMed  Google Scholar 

  18. Bombard Y, Robson M, Offit K. Revealing the incidentalome when targeting the tumor genome. Jama. 2013;310:795–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ. Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet. 2013;14:23–34.

    Article  CAS  PubMed  Google Scholar 

  20. Menden MP, Casale FP, Stephan J, Bignell GR, Iorio F, McDermott U, et al. The germline genetic component of drug sensitivity in cancer cell lines. Nat Commun. 2018;9:3385.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lockhart AC, Tirona RG, Kim RB. Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol Cancer Ther. 2003;2:685–98.

    CAS  PubMed  Google Scholar 

  22. Jeck WR, Parker J, Carson CC, Shields JM, Sambade MJ, Peters EC, et al. Targeted next generation sequencing identifies clinically actionable mutations in patients with melanoma. Pigment Cell Melanoma Res. 2014;27:653–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seifert BA, O’Daniel JM, Amin K, Marchuk DS, Patel NM, Parker JS, et al. Germline analysis from tumor-germline sequencing dyads to identify clinically actionable secondary findings. Clin Cancer Res. 2016;22:4087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao X, Wang A, Walter V, Patel NM, Eberhard DA, Hayward MC, et al. Combined targeted DNA sequencing in non-small cell lung cancer (NSCLC) using UNCseq and NGScopy, and RNA sequencing using UNCqeR for the detection of genetic aberrations in NSCLC. PLoS One. 2015;10:e0129280.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharm Ther. 2012;92:414–7.

    Article  CAS  Google Scholar 

  26. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.

    Article  CAS  PubMed  Google Scholar 

  27. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12:e1004873.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19:4–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Huis-Tanja L, Kweekel D, Gelderblom H, Koopman M, Punt K, Guchelaar HJ, et al. Concordance of genotype for polymorphisms in DNA isolated from peripheral blood and colorectal cancer tumor samples. Pharmacogenomics. 2013;14:2005–12.

    Article  PubMed  Google Scholar 

  31. Nicholson WT, Formea CM, Matey ET, Wright JA, Giri J, Moyer AM. Considerations when applying pharmacogenomics to your practice. Mayo Clin Proc. 2021;96:218–30.

    Article  PubMed  Google Scholar 

  32. Innocenti F, Mills SC, Sanoff H, Ciccolini J, Lenz HJ, Milano G. All you need to know about DPYD genetic testing for patients treated with fluorouracil and capecitabine: a practitioner-friendly guide. JCO Oncol Pr. 2020;16:793–8.

    Google Scholar 

  33. Goetz MP, Sun JX, Suman VJ, Silva GO, Perou CM, Nakamura Y, et al. Loss of heterozygosity at the CYP2D6 locus in breast cancer: implications for germline pharmacogenetic studies. J Natl Cancer Inst. 2014;107:dju401.

    PubMed  PubMed Central  Google Scholar 

  34. Ratain MJ, Nakamura Y, Cox NJ. CYP2D6 genotype and tamoxifen activity: understanding interstudy variability in methodological quality. Clin Pharm Ther. 2013;94:185–7.

    Article  CAS  Google Scholar 

  35. Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R, et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst. 2012;104:441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharm. 2021;12:648407.

    Article  CAS  Google Scholar 

  37. Szakács G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, Bussey KJ, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 2004;6:129–37.

    Article  PubMed  Google Scholar 

  38. Helsby NA, Yong M, van Kan M, de Zoysa JR, Burns KE. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br J Clin Pharm. 2019;85:1925–34.

    Article  CAS  Google Scholar 

  39. Song Q, Zhou X, Yu J, Dong N, Wang X, Yang H, et al. The prognostic values of CYP2B6 genetic polymorphisms and metastatic sites for advanced breast cancer patients treated with docetaxel and thiotepa. Sci Rep. 2015;5:16775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in this publication was supported by the University of North Carolina (UNC) University Cancer Research Fund (UCRF) and the UNC Integrative Translational Science Center grant (NCI UG1 CA233333).

Author information

Authors and Affiliations

Authors

Contributions

NG, JSP, and FI were responsible for designing the study, analyzing the data, and writing, reviewing, and editing the manuscript. ASE and SAP were responsible for analyzing the data, and writing, reviewing, and editing the manuscript. DNH and MCH were responsible for the study design, collecting the data, and reviewing and editing the manuscript.

Corresponding author

Correspondence to Amy S. Etheridge.

Ethics declarations

Competing interests

Dr. Innocenti is an AbbVie employee and receives stocks from the company. The other authors disclose no conflicts of interest relevant to this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillis, N., Etheridge, A.S., Patil, S.A. et al. Sequencing of genes of drug response in tumor DNA and implications for precision medicine in cancer patients. Pharmacogenomics J 23, 73–81 (2023). https://doi.org/10.1038/s41397-023-00299-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-023-00299-7

Search

Quick links