Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic factors contributing to late adverse musculoskeletal effects in childhood acute lymphoblastic leukemia survivors

Abstract

Background

A substantial number of survivors of childhood acute lymphoblastic leukemia (ALL) suffer from treatment-related late adverse effects. While multiple studies have identified the effects of chemotherapeutics and radiation therapy on musculoskeletal outcomes, few have investigated their associations with genetic factors.

Methods

Here we analyzed musculoskeletal complications in relation to common and rare genetic variants derived through whole-exome sequencing of the PETALE cohort. Top-ranking associations were further assessed through stratified and multivariate analyses.

Results

DUOX2 variant was associated with skeletal muscle function deficit, as defined by peak muscle power Z score ≤ −2 SD (P = 4.5 × 10−5 for genotyping model). Upon risk stratification analysis, common variants in the APOL3, COL12A1, and LY75 genes were associated with Z score ≤ −2 SD at the cross-sectional area (CSA) at 4% radial length and lumbar bone mineral density (BMD) in high-risk patients (P ≤ 0.01). The modulation of the effect by risk group was driven by the interaction of the genotype with cumulative glucocorticoid dose. Identified variants remained significant throughout multivariate analyses incorporating non-genetic factors of the studied cohort.

Conclusion

This exploratory study identified novel genetic variants associated with long-term musculoskeletal impairments in childhood ALL survivors. Replication in an independent cohort is needed to confirm the association found in this study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available in the data repositories listed in References, and/or are available from the corresponding author on reasonable request.

References

  1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Toronto (ON) Canadian Cancer Society; 2017.

  2. Cancer facts and figures 2014: American Cancer Society. https://www.cancer.gov/types/leukemia/hp/child-all-treatment-pdq#cit/section_1.5.

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  4. Casillas J, Sakamoto KM. Topics in pediatric leukemia-acute lymphoblastic leukemia and late effects in long-term survivors. MedGenMed. 2005;7:22.

    PubMed  PubMed Central  Google Scholar 

  5. Ness KK, Baker KS, Dengel DR, Youngren N, Sibley S, Mertens AC, et al. Body composition, muscle strength deficits and mobility limitations in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;49:975–81.

    Article  PubMed  Google Scholar 

  6. Wasilewski-Masker K, Kaste SC, Hudson MM, Esiashvili N, Mattano LA, Meacham LR. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics. 2008;121:e705–13.

    Article  PubMed  Google Scholar 

  7. Makitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies LR, Jahnukainen K. Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. Eur J Endocrinol. 2013;168:281–8.

    Article  CAS  PubMed  Google Scholar 

  8. Gawade PL, Hudson MM, Kaste SC, Neglia JP, Wasilewski-Masker K, Constine LS, et al. A systematic review of selected musculoskeletal late effects in survivors of childhood cancer. Curr Pediatr Rev. 2014;10:249–62.

    Article  PubMed  Google Scholar 

  9. Fiscaletti M, Samoilenko M, Dubois J, Miron MC, Lefebvre G, Krajinovic M, et al. Predictors vertebral deformity in long-term survivors of childhood acute lymphoblastic leukemia: the petale study. J Clin Endocrinol Metab. 2021;106:512–25.

    Article  PubMed  Google Scholar 

  10. Marcoux S, Drouin S, Laverdiere C, Alos N, Andelfinger GU, Bertout L, et al. The PETALE study: late adverse effects and biomarkers in childhood acute lymphoblastic leukemia survivors. Pediatr Blood Cancer. 2017;64. https://doi.org/10.1002/pbc.26361.

  11. DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29:526–34.

    Article  CAS  PubMed  Google Scholar 

  12. Mitra R. Adverse effects of corticosteroids on bone metabolism: a review. PM R. 2011;3:466–71. quiz 71

    Article  PubMed  Google Scholar 

  13. Atkinson SA, Halton JM, Bradley C, Wu B, Barr RD. Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs and nutrition. Int J Cancer Suppl. 1998;11:35–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hesseling PB, Hough SF, Nel ED, van Riet FA, Beneke T, Wessels G. Bone mineral density in long-term survivors of childhood cancer. Int J Cancer Suppl. 1998;11:44–7.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell JA, Cousminer DL, Zemel BS, Grant SF, Chesi A. Genetics of pediatric bone strength. Bonekey Rep. 2016;5:823.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 2006;20:2492–506.

    Article  CAS  PubMed  Google Scholar 

  17. Roth SM. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. Bonekey Rep. 2012;1:58.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aaron M, Nadeau G, Ouimet-Grennan E, Drouin S, Bertout L, Beaulieu P, et al. Identification of a single-nucleotide polymorphism within CDH2 gene associated with bone morbidity in childhood acute lymphoblastic leukemia survivors. Pharmacogenomics. 2019;20:409–20.

    Article  CAS  PubMed  Google Scholar 

  19. Nadeau G, Ouimet-Grennan E, Aaron M, Drouin S, Bertout L, Shalmiev A, et al. Identification of genetic variants associated with skeletal muscle function deficit in childhood acute lymphoblastic leukemia survivors. Pharmgenom Pers Med. 2019;12:33–45.

    CAS  Google Scholar 

  20. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Min Res. 1993;8:1137–48.

    Article  CAS  Google Scholar 

  21. Veilleux LN, Rauch F. Reproducibility of jumping mechanography in healthy children and adults. J Musculoskelet Neuronal Interact. 2010;10:256–66.

    PubMed  Google Scholar 

  22. Sumnik Z, Matyskova J, Hlavka Z, Durdilova L, Soucek O, Zemkova D. Reference data for jumping mechanography in healthy children and adolescents aged 6-18 years. J Musculoskelet Neuronal Interact. 2013;13:297–311.

    CAS  PubMed  Google Scholar 

  23. Spinella JF, Healy J, Saillour V, Richer C, Cassart P, Ouimet M, et al. Whole-exome sequencing of a rare case of familial childhood acute lymphoblastic leukemia reveals putative predisposing mutations in Fanconi anemia genes. BMC Cancer. 2015;15:539.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Picard: set of command line tools for manipulating high-throughput sequencing (HTS) data. https://broadinstitute.github.io/picard/.

  26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet. 2006;7:61–80.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  PubMed  Google Scholar 

  30. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  31. Exome Variant Server, NHLB1 GO Exome Sequencing Project (ESP) [Internet]. [07/2020]. http://evs.gs.washington.edu/EVS/.

  32. Rohlfs RV, Weir BS. Distributions of Hardy–Weinberg equilibrium test statistics. Genetics. 2008;180:1609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89:82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.

    Article  CAS  PubMed  Google Scholar 

  36. Benjamini Y, Yekutieli D. Quantitative trait Loci analysis using the false discovery rate. Genetics. 2005;171:783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genetic Factors contributing to Late Adverse Musculoskeletal Effects in Childhood Acute Lymphoblastic Leukemia Survivors (Supplemental material). FigShare Dataset. https://doi.org/10.6084/m9.figshare.13599764.v4 [Internet]. 2021.

  38. Duchateau PN, Pullinger CR, Cho MH, Eng C, Kane JP. Apolipoprotein L gene family: tissue-specific expression, splicing, promoter regions; discovery of a new gene. J Lipid Res. 2001;42:620–30.

    Article  CAS  PubMed  Google Scholar 

  39. Vanhollebeke B, Pays E. The function of apolipoproteins L. Cell Mol Life Sci. 2006;63:1937–44.

    Article  CAS  PubMed  Google Scholar 

  40. Uzureau S, Coquerelle C, Vermeiren C, Uzureau P, Van Acker A, Pilotte L, et al. Apolipoproteins L control cell death triggered by TLR3/TRIF signaling in dendritic cells. Eur J Immunol. 2016;46:1854–66.

    Article  CAS  PubMed  Google Scholar 

  41. Opferman JT, Kothari A. Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 2018;25:37–45.

    Article  CAS  PubMed  Google Scholar 

  42. Komori T. Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci. 2016;17:12.

    Article  Google Scholar 

  43. Izu Y, Sun M, Zwolanek D, Veit G, Williams V, Cha B, et al. Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol. 2011;193:1115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiquet M, Birk DE, Bonnemann CG, Koch M. Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. Int J Biochem Cell Biol. 2014;53:51–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Canalis E. Effect of glucocorticoids on type I collagen synthesis, alkaline phosphatase activity, and deoxyribonucleic acid content in cultured rat calvariae. Endocrinology. 1983;112:931–9.

    Article  CAS  PubMed  Google Scholar 

  46. Oikarinen AI, Vuorio EI, Zaragoza EJ, Palotie A, Chu ML, Uitto J. Modulation of collagen metabolism by glucocorticoids. Receptor-mediated effects of dexamethasone on collagen biosynthesis in chick embryo fibroblasts and chondrocytes. Biochem Pharmacol 1988;37:1451–62.

    Article  CAS  PubMed  Google Scholar 

  47. Advani S, LaFrancis D, Bogdanovic E, Taxel P, Raisz LG, Kream BE. Dexamethasone suppresses in vivo levels of bone collagen synthesis in neonatal mice. Bone. 1997;20:41–6.

    Article  CAS  PubMed  Google Scholar 

  48. Damiano S, Fusco R, Morano A, De Mizio M, Paterno R, De Rosa A, et al. Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells. PLoS ONE. 2012;7:e34405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grasberger H, De Deken X, Miot F, Pohlenz J, Refetoff S. Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol Endocrinol. 2007;21:1408–21.

    Article  CAS  PubMed  Google Scholar 

  50. Liu S, Zhang W, Zhang L, Zou H, Lu K, Li Q, et al. Genetic and functional analysis of two missense DUOX2 mutations in congenital hypothyroidism and goiter. Oncotarget. 2018;9:4366–74.

    Article  PubMed  Google Scholar 

  51. Ohye H, Sugawara M. Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med. 2010;235:424–33.

    Article  CAS  Google Scholar 

  52. Peters C, Nicholas AK, Schoenmakers E, Lyons G, Langham S, Serra EG, et al. DUOX2/DUOXA2 mutations frequently cause congenital hypothyroidism that evades detection on newborn screening in the United Kingdom. Thyroid. 2019;29:790–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin HY, Heo SH, Kim YM, Kim GH, Choi JH, Lee BH, et al. High frequency of DUOX2 mutations in transient or permanent congenital hypothyroidism with eutopic thyroid glands. Horm Res Paediatr. 2014;82:252–60.

    Article  CAS  PubMed  Google Scholar 

  54. Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, et al. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab. 2007;92:3764–73.

    Article  CAS  PubMed  Google Scholar 

  55. Fariduddin MM, Bansal N. Hypothyroid Myopathy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; August 12, 2021. PMID: 30137798 Bookshelf ID: NBK519513.

  56. Duyff RF, Van den Bosch J, Laman DM, van Loon BJ, Linssen WH. Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study. J Neurol Neurosurg Psychiatry. 2000;68:750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. NCBI. LY75 lymphocyte antigen 75 [Homo sapiens (human)] Bethesda, MD: NCBI; 2020 https://www.ncbi.nlm.nih.gov/gene/4065.

  58. Makino K, Ishikawa A. Genetic identification of Ly75 as a novel quantitative trait gene for resistance to obesity in mice. Sci Rep. 2018;8:17658.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Giridhar PV, Funk HM, Gallo CA, Porollo A, Mercer CA, Plas DR, et al. Interleukin-6 receptor enhances early colonization of the murine omentum by upregulation of a mannose family receptor, LY75, in ovarian tumor cells. Clin Exp Metastasis. 2011;28:887–97.

    Article  CAS  PubMed  Google Scholar 

  60. Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, et al. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. Oncotarget. 2016;7:14125–42.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mehdi S, Bachvarova M, Scott-Boyer MP, Droit A, Bachvarov D. LY75 ablation mediates mesenchymal-epithelial transition (MET) in epithelial ovarian cancer (EOC) cells associated with DNA methylation alterations and suppression of the Wnt/beta-catenin pathway. Int J Mol Sci. 2020;21:1848.

    Article  CAS  PubMed Central  Google Scholar 

  62. Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr. 2016;42:88.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bernardi RE, Broccoli L, Hirth N, Justice NJ, Deussing JM, Hansson AC, et al. Dissociable role of corticotropin releasing hormone receptor subtype 1 on dopaminergic and D1 dopaminoceptive neurons in cocaine seeking behavior. Front Behav Neurosci. 2017;11:221.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jones TS, Kaste SC, Liu W, Cheng C, Yang W, Tantisira KG, et al. CRHR1 polymorphisms predict bone density in survivors of acute lymphoblastic leukemia. J Clin Oncol. 2008;26:3031–7.

    Article  CAS  PubMed  Google Scholar 

  65. den Hoed MA, Pluijm SM, Stolk L, Uitterlinden AG, Pieters R, van den Heuvel-Eibrink MM. Genetic variation and bone mineral density in long-term adult survivors of childhood cancer. Pediatr Blood Cancer. 2016;63:2212–20.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all childhood ALL survivors and their parents who consented to take part in the PETALE study, as well as all study collaborators for their precious involvement in the production of this manuscript. The PETALE study is funded by the Institute of Cancer Research (ICR) of the Canadian Institutes of Health Research (CIHR), grant number: 118694, in collaboration with the Cancer Research Society Inc. (CRS), the Garron Family Cancer Center of the Hospital for Sick Children, the Pediatric Oncology Groups of Ontario (POGO), the Canadian Cancer Society Research Institute (CCSRI), the C17 Research Network (C17), the Sainte-Justine Hospital Foundation and the FRQS Applied Medical Genetics Network.

Author information

Authors and Affiliations

Authors

Contributions

MK, NA, DS, and CL conceived the study; SD and LB participated in its coordination. PSO and PB processed genetic data; NA, MA, GN, EOG, LNV, FR, and AR processed clinical data of study participants. AS, MK, and KP took part in statistical analysis design and performed computational analyses. AS, MK, and NA drafted the article and accept responsibility for the integrity of the data analysis. All authors have contributed to data interpretation and revised critically the manuscript.

Corresponding author

Correspondence to M. Krajinovic.

Ethics declarations

Competing interests

AS worked at Phinc. Modeling as a pharmacokineticist. GN, MA, EOG, SD, LB, PB, PSO, LNV, FR, AR, KP, CL, SD, NA, and MK have nothing to disclose. All authors declare that they have no competing interests.

Ethical conduct of research

Patients older than 18 years of age and parents of minor patients gave their written informed consent to participate in the study, which was approved by the Institutional Review Board of SJUHC. The study was conducted in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalmiev, A., Nadeau, G., Aaron, M. et al. Genetic factors contributing to late adverse musculoskeletal effects in childhood acute lymphoblastic leukemia survivors. Pharmacogenomics J 22, 19–24 (2022). https://doi.org/10.1038/s41397-021-00252-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00252-6

This article is cited by

Search

Quick links