Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic moderators of naltrexone efficacy in reducing heavy drinking in Alcohol Use Disorder: a randomized trial

Abstract

Polymorphisms in genes associated with opioid signaling and dopamine reuptake and inactivation may moderate naltrexone efficacy in Alcohol Use Disorder (AUD), but the effects of epigenetic modification of these genes on naltrexone response are largely unexplored. This study tested interactions between methylation in the μ-opioid receptor (OPRM1), dopamine transporter (SLC6A3), and catechol-O-methyltransferase (COMT) genes as predictors of naltrexone effects on heavy drinking in a 16-week randomized, placebo-controlled trial among 145 treatment-seeking AUD patients. OPRM1 methylation interacted with both SLC6A3 and COMT methylation to moderate naltrexone efficacy, such that naltrexone-treated individuals with lower methylation of the OPRM1 promoter and the SLC6A3 promoter (p = 0.006), COMT promoter (p = 0.005), or SLC6A3 3’ untranslated region (p = 0.004), relative to placebo and to those with higher OPRM1 and SLC6A3 or COMT methylation, had significantly fewer heavy drinking days. Epigenetic modification of opioid- and dopamine-related genes may represent a novel pharmacoepigenetic predictor of naltrexone efficacy in AUD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of naltrexone (open symbols), relative to placebo (closed symbols), on percent heavy drinking days (PHDD) during the 16-week trial as a function of SLC6A3 promoter and OPRM1 promoter methylation.
Fig. 2: Effect of naltrexone (open symbols), relative to placebo (closed symbols), on percent heavy drinking days (PHDD) during the 16-week trial as a function of COMT promoter and OPRM1 promoter methylation.
Fig. 3: Effect of naltrexone (open symbols), relative to placebo (closed symbols), on percent heavy drinking days (PHDD) during the 16-week trial as a function of SLC6A3 VNTR and OPRM1 promoter methylation.

Similar content being viewed by others

References

  1. Jonas DE, Amick HR, Feltner C, Bobashev G, Thomas K, Wines R, et al. Pharmacotherapy for adults with alcohol use disorders in outpatient settings: a systematic review and meta-analysis. JAMA. 2014;311:1889–900.

    Article  PubMed  Google Scholar 

  2. Jones JD, Comer SD, Kranzler HR. The pharmacogenetics of alcohol use disorder. Alcohol Clin Exp Res. 2015;39:391–402.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gonzales RA, Weiss F. Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J Neurosci. 1998;18:10663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benjamin D, Grant ER, Pohorecky LA. Naltrexone reverses ethanol-induced dopamine release in the nucleus accumbens in awake, freely moving rats. Brain Res. 1993;621:137–40.

    Article  CAS  PubMed  Google Scholar 

  5. Schacht JP, Anton RF, Voronin KE, Randall PK, Li X, Henderson S, et al. Interacting effects of naltrexone and OPRM1 and DAT1 variation on the neural response to alcohol cues. Neuropsychopharmacology. 2013;38:414–22.

    Article  CAS  PubMed  Google Scholar 

  6. Anton RF, Voronin KK, Randall PK, Myrick H, Tiffany A. Naltrexone modification of drinking effects in a subacute treatment and bar-lab paradigm: influence of OPRM1 and dopamine transporter (SLC6A3) genes. Alcohol Clin Exp Res. 2012;36:2000–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anton RF, Voronin KE, Book SW, Latham PK, Randall PK, Glen WB, et al. Opioid and dopamine genes interact to predict naltrexone response in a randomized alcohol use disorder clinical trial. Alcohol Clin Exp Res. 2020;44:2084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA. 1998;95:9608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weerts EM, McCaul ME, Kuwabara H, Yang X, Xu X, Dannals RF, et al. Influence of OPRM1 Asn40Asp variant (A118G) on [11C]carfentanil binding potential: preliminary findings in human subjects. Int J Neuropsychopharmacol. 2013;16:47–53.

    Article  CAS  PubMed  Google Scholar 

  10. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, et al. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology. 2000;22:133–9.

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75:807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6:243–50.

    Article  CAS  PubMed  Google Scholar 

  13. Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol. 1999;409:38–56.

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, et al. Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience. 2003;116:127–37.

    Article  CAS  PubMed  Google Scholar 

  15. Gelernter J, Kranzler H, Cubells J. Genetics of two mu opioid receptor gene (OPRM1) exon I polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects. Mol Psychiatry. 1999;4:476–83.

    Article  CAS  PubMed  Google Scholar 

  16. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.

    Article  CAS  PubMed  Google Scholar 

  17. Andria ML, Simon EJ. Localization of promoter elements in the human mu-opioid receptor gene and regulation by DNA methylation. Brain Res Mol Brain Res. 1999;70:54–65.

    Article  CAS  PubMed  Google Scholar 

  18. Wiers CE, Lohoff FW, Lee J, Muench C, Freeman C, Zehra A, et al. Methylation of the dopamine transporter gene in blood is associated with striatal dopamine transporter availability in ADHD: a preliminary study. Eur J Neurosci. 2018;48:1884–95.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Swift-Scanlan T, Smith CT, Bardowell SA, Boettiger CA. Comprehensive interrogation of CpG island methylation in the gene encoding COMT, a key estrogen and catecholamine regulator. BMC Med Genomics. 2014;7:5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Herman AI, Kranzler HR, Anton RF, Simen AA, Gelernter J. Hypermethylation of OPRM1 promoter region in European Americans with alcohol dependence. J Hum Genet. 2012;57:670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hillemacher T, Frieling H, Hartl T, Wilhelm J, Kornhuber J, Bleich S. Promoter specific methylation of the dopamine transporter gene is altered in alcohol dependence and associated with craving. J Psychiatr Res. 2009;43:388–92.

    Article  PubMed  Google Scholar 

  22. Wiers CE, Shumay E, Volkow ND, Frieling H, Kotsiari A, Lindenmeyer J, et al. Effects of depressive symptoms and peripheral DAT methylation on neural reactivity to alcohol cues in alcoholism. Transl Psychiatry. 2015;5:e648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruggeri B, Nymberg C, Vuoksimaa E, Lourdusamy A, Wong CP, Carvalho FM, et al. Association of protein phosphatase PPM1G with alcohol use disorder and brain activity during behavioral control in a genome-wide methylation analysis. Am J Psychiatry. 2015;172:543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin Y, Kranzler HR, Farrer LA, Xu H, Henderson DC, Zhang H. An analysis of the effect of mu-opioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. Pharmacogenomics J. 2020;20:672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A, et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci. 2011;31:6692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy BC, O’Reilly RL, Singh SM. Site-specific cytosine methylation in S-COMT promoter in 31 brain regions with implications for studies involving schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:37–42.

    Article  PubMed  Google Scholar 

  27. Schacht JP, Randall PK, Latham PK, Voronin KE, Book SW, Myrick H, et al. Predictors of naltrexone response in a randomized trial: reward-related brain activation, OPRM1 genotype, and smoking status. Neuropsychopharmacology. 2017;42:2640–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition. New York: Biometrics Research, New York State Psychiatric Institute; 2002.

  29. Stout RL, Wirtz PW, Carbonari JP, Del Boca FK. Ensuring balanced distribution of prognostic factors in treatment outcome research. J Stud Alcohol Suppl. 1994;12:70–5.

    Article  CAS  PubMed  Google Scholar 

  30. Sobell LC, Sobell MB Timeline follow-back: A technique for assessing self-reported alcohol consumption. In: Allen JP, Litten RZ, editors. Measuring alcohol consumption: psychosocial and biochemical methods. Totowa, NJ: Humana Press; 1992. p. 41–72.

  31. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13:R97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9:436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11:1138–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I. Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem. 1994;223:1049–59.

    Article  CAS  PubMed  Google Scholar 

  37. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J. 2001;1:152–6.

    Article  CAS  PubMed  Google Scholar 

  38. Maisel NC, Blodgett JC, Wilbourne PL, Humphreys K, Finney JW. Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders: when are these medications most helpful? Addiction. 2013;108:275–93.

    Article  PubMed  Google Scholar 

  39. Boileau I, Assaad J-M, Pihl RO, Benkelfat C, Leyton M, Diksic M, et al. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 2003;49:226–31.

    Article  CAS  PubMed  Google Scholar 

  40. Weerts EM, Wand GS, Maher B, Xu X, Stephens MA, Yang X, et al. Independent and interactive effects of OPRM1 and DAT1 polymorphisms on alcohol consumption and subjective responses in social drinkers. Alcohol Clin Exp Res. 2017;41:1093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012;69:3613–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP. The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem. 2001;79:1033–8.

    Article  CAS  PubMed  Google Scholar 

  44. Fuke S, Sasagawa N, Ishiura S. Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3’ non-coding polymorphic region of the human dopamine transporter (DAT1) gene. J Biochem. 2005;137:205–16.

    Article  CAS  PubMed  Google Scholar 

  45. Hartwell EE, Feinn R, Morris PE, Gelernter J, Krystal J, Arias AJ, et al. Systematic review and meta-analysis of the moderating effect of rs1799971 in OPRM1, the mu-opioid receptor gene, on response to naltrexone treatment of alcohol use disorder. Addiction. 2020;115:1426–37.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Illingworth R, Kerr A, Desousa D, Jorgensen H, Ellis P, Stalker J, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 2008;6:e22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Robert Wilson, Ph.D., W. Bailey Glen, Ph.D., and E. Starr Hazard, Ph.D. for their assistance with conducting the methylation assays; Patricia Latham, Ph.D., R.N., Sarah Book, M.D., and Scott Stewart, M. D., for medical management of participants; Konstantin Voronin, M.D., Ph.D., Mark Ghent, B. A., and Melissa Michel, M. A., for assistance with participant recruitment and assessment; Patrick K. Randall, Ph.D., for study data management and initial statistical support; and Yeong-bin Im, M. S., for performing the DNA extraction and genotyping assays.

Author contributions

JPS conceived the study, conducted the data analysis and interpretation, and drafted the paper. MH and BHC assisted with data analysis and interpretation. RFA conceived and designed the study and assisted with data interpretation. All authors revised the paper critically for important intellectual content, approved of the final version, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding

This research was supported by grants from the National Institute on Alcohol Abuse and Alcoholism (R01 AA017633, PI: RFA) and the Medical University of South Carolina Center for Genomic Medicine (PI: JPS). Additional funding was provided by a generous gift from Robert and Karen Sywolski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Schacht.

Ethics declarations

Competing interests

JPS reports that, in the past 3 years, he has consulted for and received grant funding from Laboratorio Farmaceutico CT. BHC is an employee of FOXO BioScience. RFA reports that, in the past three years, he has received grant funding from Laboratorio Farmaceutico CT and consulted for Allergan, Alkermes, Dicerna, Insys, and Life Epigenetics (FOXO BioScience). He is the Chair of the Alcohol Clinical Trials Initiative (ACTIVE), which is conducted under the auspices of the American Society for Clinical Psychopharmacology and funded (in the past 3 years) in part by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. MH reports no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schacht, J.P., Hoffman, M., Chen, B.H. et al. Epigenetic moderators of naltrexone efficacy in reducing heavy drinking in Alcohol Use Disorder: a randomized trial. Pharmacogenomics J 22, 1–8 (2022). https://doi.org/10.1038/s41397-021-00250-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00250-8

Search

Quick links