Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ABCC4 single-nucleotide polymorphisms as markers of tenofovir disoproxil fumarate-induced kidney impairment

Abstract

Recently, the use of antiretroviral drug tenofovir disoproxil fumarate (TDF) is increased, thanks to the new co-formulation with doravirine, the availability of booster-free regimens, and its advantageous lipid-lowering effect. The aim of our study was to identify genetic markers that contribute to assess the risk of TDF-related renal toxicity. We have retrospectively investigated, in 179 HIV positive patients treated with TDF, the association between the main variants in ABCC2, ABCC4, and ABCC10 genes and four safety endpoints, three clinically relevant as renal outcomes and a higher tenofovir plasma concentration. In patients with an annual eGFR decline >5 mL/min/1.73 m2 a difference in genotype frequencies was observed for ABCC10 c.1875 + 526 G>A (3 subjects AA vs. 44 GG + GA, p = 0.045). In patients with an eGFR decrement >25%, plus a decline in GFR category and TDF discontinuation, a difference was observed for ABCC4 c.*38T>G (35 subjects TG + GG vs. 18 TT, p = 0.052). At univariate analysis OR was 1.39 [(95% CI 1.00–1.96) p = 0.054] and at multivariate analysis OR was 1.49 [(95% CI 1.00–2.22) p = 0.049]. The stronger associations were found between the tenofovir accumulation and ABCC4 c.*38T>G and c.3348G>A: the percentage of these patients was higher in the TG + GG (p = 0.011) and in the AA (p = 0.004) genotype, respectively. The logistic regression analysis confirmed these significant relationships. No significant association was observed in patients with eGFR < 60 mL/min/1.73m2 and with the studied ABCC2 polymorphisms. Our results show a major role for a combined determination of ABCC4/ABCC10 variants as an indicator of tenofovir toxicity in the clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of TFV plasma concentrations in patients having.

Similar content being viewed by others

References

  1. Wassner C, Bradley N, Lee Y. A review and clinical understanding of tenofovir: tenofovir disoproxil fumarate versus tenofovir alafenamide. J Int Assoc Provid AIDS Care. 2020;19:2325958220919231. https://doi.org/10.1177/2325958220919231.

    Article  PubMed  PubMed Central  Google Scholar 

  2. EACS. Guidelines, version 10.0, 2019. https://www.eacsociety.org/files/2019_guidelines-10.0%20final.pdf.

  3. US HIV treatment guidelines. https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv/0.

  4. Kauppinen KJ, Kivelä P, Sutinen J. Switching from tenofovir disoproxil fumarate to tenofovir alafenamide significantly worsens the lipid profile in a real-world setting. AIDS Patient Care STDS. 2019;33:500–6. https://doi.org/10.1089/apc.2019.0236.

    Article  PubMed  Google Scholar 

  5. Hill A, Hughes SL, Gotham D, Pozniak AL. Tenofovir alafenamide versus tenofovir disoproxil fumarate: is there a true difference in efficacy and safety? J Virus Erad. 2018;4:72–9.

    Article  Google Scholar 

  6. Pilkington V, Hughes SL, Pepperrell T, McCann K, Gotham D, Pozniak AL, et al. Tenofovir alafenamide vs. tenofovir disoproxil fumarate: an updated meta-analysis of 14 894 patients across 14 trials. AIDS. 2020;34:2259–68. https://doi.org/10.1097/QAD.0000000000002699.

    Article  PubMed  Google Scholar 

  7. FDA. Integrated review for Pifeltro and Delstrigo approval. 2018. https://www.fda.gov/media/128270/download.

  8. EMA. Assessment report for Delstrigo. 2018. EMA/874672/2018. https://www.ema.europa.eu/en/documents/assessment-report/delstrigo-epar-public-assessment-report_en.pdf.

  9. Pham HT, Xiao MA, Principe MA, Wong A, Mesplède T. Pharmaceutical, clinical, and resistance information on doravirine, a novel non-nucleoside reverse transcriptase inhibitor for the treatment of HIV-1 infection. Drugs Context. 2020;9:2019-11-4. https://doi.org/10.7573/dic.2019-11-4.

  10. Boyle A, Moss CE, Marzolini C, Khoo S. Clinical pharmacodynamics, pharmacokinetics, and drug interaction profile of doravirine. Clin Pharmacokinet. 2019;58:1553–65. https://doi.org/10.1007/s40262-019-00806-9.

    Article  CAS  PubMed  Google Scholar 

  11. Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol. 2014;5:248. https://doi.org/10.3389/fphar.2014.00248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kohler JJ, Hosseini SH, Hoying-Brandt A, Green E, Johnson DM, Russ R, et al. Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Investig. 2009;89:513–9. https://doi.org/10.1038/labinvest.2009.14.

    Article  CAS  PubMed  Google Scholar 

  13. Rodríguez-Nóvoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J, et al. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis. 2009;48:e108–16. https://doi.org/10.1086/598507.

    Article  CAS  PubMed  Google Scholar 

  14. Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204:145–53. https://doi.org/10.1093/infdis/jir215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rungtivasuwan K, Avihingsanon A, Thammajaruk N, Mitruk S, Burger DM, Ruxrungtham K, et al. Influence of ABCC2 and ABCC4 polymorphisms on tenofovir plasma concentrations in Thai HIV-infected patients. Antimicrob Agents Chemother. 2015;59:3240–5. https://doi.org/10.1128/AAC.04930-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calcagno A, Fiumanò M, Zugna D, Cusato J, Montrucchio C, Marinaro L, et al. Tenofovir disoproxil fumarate discontinuation for renal outcomes: any room for treatment personalization? Pharmacogenomics J. 2019;19:65–71. https://doi.org/10.1038/s41397-018-0064-y.

    Article  CAS  PubMed  Google Scholar 

  17. Calcagno A, Cusato J, Marinaro L, Trentini L, Alcantarini C, Mussa M, et al. Clinical pharmacology of tenofovir clearance: a pharmacokinetic/pharmacogenetic study on plasma and urines. Pharmacogenomics J. 2016;16:514–8. https://doi.org/10.1038/tpj.2015.71.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson PL, Lamba J, Aquilante CL, Schuetz E, Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006;42:441–9. https://doi.org/10.1097/01.qai.0000225013.53568.69.

    Article  CAS  PubMed  Google Scholar 

  19. Rungtivasuwan K, Avihingsanon A, Thammajaruk N, Mitruk S, Burger DM, Ruxrungtham K, et al. Pharmacogenetics-based population pharmacokinetic analysis of tenofovir in Thai HIV-infected patients. Pharmacogenomics. 2017;18:1481–90. https://doi.org/10.2217/pgs-2017-0128.

    Article  CAS  PubMed  Google Scholar 

  20. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47:298–303. https://doi.org/10.1097/qai.0b013e31815e7478.

    Article  CAS  PubMed  Google Scholar 

  21. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3 Suppl.:1–150.

    Google Scholar 

  22. Rodríguez-Nóvoa S, Labarga P, D’Avolio A, Barreiro P, Albalate M, Vispo E, et al. Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. AIDS. 2010;24:1064–6. https://doi.org/10.1097/QAD.0b013e32833202e2.

    Article  CAS  PubMed  Google Scholar 

  23. Poizot-Martin I, Solas C, Allemand J, Obry-Roguet V, Pradel V, Bregigeon S, et al. Renal impairment in patients receiving a tenofovir-cART regimen: impact of tenofovir trough concentration. J Acquir Immune Defic Syndr. 2013;62:375–80. https://doi.org/10.1097/QAI.0b013e31827ce4ee.

    Article  CAS  PubMed  Google Scholar 

  24. Ezinga M, Wetzels JF, Bosch ME, van der Ven AJ, Burger DM. Long-term treatment with tenofovir: prevalence of kidney tubular dysfunction and its association with tenofovir plasma concentration. Antivir Ther. 2014;19:765–71. https://doi.org/10.3851/IMP2761.

    Article  CAS  PubMed  Google Scholar 

  25. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cattaneo D, Minisci D, Baldelli S, Mazzali C, Giacomelli A, Milazzo L, et al. Effect of cobicistat on tenofovir disoproxil fumarate (TDF): what is true for TAF may also be true for TDF. J Acquir Immune Defic Syndr. 2018;77:86–92. https://doi.org/10.1097/QAI.0000000000001558.

    Article  CAS  PubMed  Google Scholar 

  27. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006;194:1481–91. https://doi.org/10.1086/508546.

    Article  CAS  PubMed  Google Scholar 

  28. Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother. 2006;50:3297–304. https://doi.org/10.1128/AAC.00251-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dahlin A, Wittwer M, de la Cruz M, Woo JM, Bam R, Scharen-Guivel V, et al. A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenet Genom. 2015;25:82–92. https://doi.org/10.1097/FPC.0000000000000110.

    Article  CAS  Google Scholar 

  30. Casado JL, Bañón S, Santiuste C, Serna J, Guzman P, Tenorio M, et al. Prevalence and significance of proximal renal tubular abnormalities in HIV-infected patients receiving tenofovir. AIDS. 2016;30:231–9. https://doi.org/10.1097/QAD.0000000000000901.

    Article  CAS  PubMed  Google Scholar 

  31. Prodan Žitnik I, Černe D, Mancini I, Simi L, Pazzagli M, Di Resta C, et al. Behalf of EFLM/ESPT working group of Personalised Laboratory Medicine on. Personalized laboratory medicine: a patient-centered future approach. Clin Chem Lab Med. 2018;56:1981–91. https://doi.org/10.1515/cclm-2018-0181.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out as part of our routine work, and was not specifically funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Montrasio.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

Data used for this study were collected for clinical purposes and were previously anonymised, according to the requirements set by the Italian Data Protection Code (leg. decree 196/2003) and by the general authorizations issued by the Data Protection Authority. Approval by Ethics Committee was unnecessary because, under Italian law, such an approval is required only in the hypothesis of prospective clinical trials on medical products for clinical use (art. 6 and art. 9, leg. decree 211/2003). Each patient included in this study provided a written informed consent for genetic testing and publication of clinical data for research purposes.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheli, S., Baldelli, S., De Silvestri, A. et al. ABCC4 single-nucleotide polymorphisms as markers of tenofovir disoproxil fumarate-induced kidney impairment. Pharmacogenomics J 21, 586–593 (2021). https://doi.org/10.1038/s41397-021-00235-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00235-7

This article is cited by

Search

Quick links