Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mucinous and non-mucinous colorectal cancers show differential expression of chemotherapy metabolism and resistance genes

Abstract

Previous research has identified differences in mutation frequency in genes implicated in chemotherapy resistance between mucinous and non-mucinous colorectal cancers (CRC). We hypothesized that outcomes in mucinous and non-mucinous CRC may be influenced by expression of genes responsible for chemotherapy resistance. Gene expression data from primary tumor samples were extracted from The Cancer Genome Atlas PanCancer Atlas. The distribution of clinical, pathological, and gene expression variables was compared between 74 mucinous and 521 non-mucinous CRCs. Predictors of overall survival (OS) were assessed in a multivariate analysis. Kaplan–Meier curves were constructed to compare survival according to gene expression using the log rank test. The median expression of 5-FU-related genes TYMS, TYMP, and DYPD was significantly higher in mucinous CRC compared to non-mucinous CRC (p < 0.001, p = 0.003, p < 0.001, respectively). The median expression of oxaliplatin-related genes ATP7B and SRPK1 was significantly reduced in mucinous versus non-mucinous CRC (p = 0.004, p = 0.007, respectively). At multivariate analysis, age (odds ratio (OR) = 0.96, p < 0.001), node positive disease (OR = 0.49, p = 0.005), and metastatic disease (OR = 0.32, p < 0.001) remained significant negative predictors of OS, while high SRPK1 remained a significant positive predictor of OS (OR = 1.59, p = 0.037). Subgroup analysis of rectal cancers demonstrated high SRPK1 expression was associated with significantly longer OS compared to low SRPK1 expression (p = 0.011). This study highlights that the molecular differences in mucinous CRC and non-mucinous CRC extend to chemotherapy resistance gene expression. SRPK1 gene expression was associated with OS, with a prognostic role identified in rectal cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normalized gene expression in mucinous versus non-mucinous colorectal cancer. Dashed horizontal line represents median value.
Fig. 2: Kaplan–Meier curves of overall survival in high versus low SRPK1 expression.

Similar content being viewed by others

References

  1. Longley DB, Allen WL, Johnston PG. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer. Biochim Biophys Acta. 2006;1766:184–96.

    CAS  PubMed  Google Scholar 

  2. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6:1322–7.

    CAS  PubMed  Google Scholar 

  3. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92:1295–302.

    Article  CAS  PubMed  Google Scholar 

  4. Kang H, O’Connell JB, Maggard MA, Sack J, Ko CY. A 10-year outcomes evaluation of mucinous and signet-ring cell carcinoma of the colon and rectum. Dis Colon Rectum. 2005;48:1161–8.

    Article  PubMed  Google Scholar 

  5. Symonds DA, Vickery AL. Mucinous carcinoma of the colon and rectum. Cancer. 1976;37:1891–900.

    Article  CAS  PubMed  Google Scholar 

  6. Park JS, Huh JW, Park YA, Cho YB, Yun SH, Kim HC, et al. Prognostic comparison between mucinous and nonmucinous adenocarcinoma in colorectal cancer. Medicine. 2015;94:e658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Catalano V, Loupakis F, Graziano F, Bisonni R, Torresi U, Vincenzi B, et al. Prognosis of mucinous histology for patients with radically resected stage II and III colon cancer. Ann Oncol. 2012;23:135–41.

    Article  CAS  PubMed  Google Scholar 

  8. McCawley N, Clancy C, O’Neill BD, Deasy J, McNamara DA, Burke JP. Mucinous rectal adenocarcinoma is associated with a poor response to neoadjuvant chemoradiotherapy: a systematic review and meta-analysis. Dis Colon Rectum. 2016;59:1200–8.

    Article  PubMed  Google Scholar 

  9. Reynolds IS, O’Connell E, Fichtner M, McNamara DA, Kay EW, Prehn JHM, et al. Mucinous adenocarcinoma is a pharmacogenomically distinct subtype of colorectal cancer. Pharmacogenomics J. 2019;20:524-532.

    Article  PubMed  CAS  Google Scholar 

  10. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.

    Article  CAS  PubMed  Google Scholar 

  11. National Cancer Institute Genomic Data Commons Portal. Legacy Archive. Available from: https://portal.gdc.cancer.gov/legacy-archive/search/f. Accessed 14 Apr 2020.

  12. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–16.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. National Cancer Institute Genomic Data Commons Pan-Cancer Atlas. Supplemental Data RNA—EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv. Available from: https://gdc.cancer.gov/about-data/publications/pancanatlas. Accessed 14 Apr 2020.

  14. Reynolds IS, Furney SJ, Kay EW, McNamara DA, Prehn JHM, Burke JP. Meta-analysis of the molecular associations of mucinous colorectal cancer. Br J Surg. 2019;106:682–91.

    Article  CAS  PubMed  Google Scholar 

  15. Hugen N, Simons M, Halilović A, van der Post RS, Bogers AJ, Marijnissen-van Zanten MA, et al. The molecular background of mucinous carcinoma beyond MUC2. J Pathol Clin Res. 2015;1:3–17.

    Article  CAS  PubMed  Google Scholar 

  16. Hyngstrom JR, Hu CY, Xing Y, You YN, Feig BW, Skibber JM, et al. Clinicopathology and outcomes for mucinous and signet ring colorectal adenocarcinoma: analysis from the National Cancer Data Base. Ann Surg Oncol. 2012;19:2814–21.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Verhulst J, Ferdinande L, Demetter P, Ceelen W. Mucinous subtype as prognostic factor in colorectal cancer: a systematic review and meta-analysis. J Clin Pathol. 2012;65:381–8.

    Article  CAS  PubMed  Google Scholar 

  18. Copur S, Aiba K, Drake JC, Allegra CJ, Chu E. Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem Pharm. 1995;49:1419–26.

    Article  CAS  PubMed  Google Scholar 

  19. Artinyan A, Essani R, Lake J, Kaiser AM, Vukasin P, Danenberg P, et al. Molecular predictors of lymph node metastasis in colon cancer: increased risk with decreased thymidylate synthase expression. J Gastrointest Surg. 2005;9:1216–21.

    Article  PubMed  Google Scholar 

  20. Lu Y, Zhuo C, Cui B, Liu Z, Zhou P, Lu Y, et al. TYMS serves as a prognostic indicator to predict the lymph node metastasis in Chinese patients with colorectal cancer. Clin Biochem. 2013;46:1478–83.

    Article  CAS  PubMed  Google Scholar 

  21. Sanguedolce R, Vultaggio G, Sanguedolce F, Modica G, Li Volsi F, Diana G, et al. The role of thymidylate synthase levels in the prognosis and the treatment of patients with colorectal cancer. Anticancer Res. 1998;18:1515–20.

    CAS  PubMed  Google Scholar 

  22. Qiu LX, Tang QY, Bai JL, Qian XP, Li RT, Liu BR, et al. Predictive value of thymidylate synthase expression in advanced colorectal cancer patients receiving fluoropyrimidine-based chemotherapy: evidence from 24 studies. Int J Cancer. 2008;123:2384–9.

    Article  CAS  PubMed  Google Scholar 

  23. Popat S, Matakidou A, Houlston RS. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol. 2004;22:529–36.

    Article  CAS  PubMed  Google Scholar 

  24. Aschele C, Debernardis D, Tunesi G, Maley F, Sobrero A. Thymidylate synthase protein expression in primary colorectal cancer compared with the corresponding distant metastases and relationship with the clinical response to 5-fluorouracil. Clin Cancer Res. 2000;6:4797–802.

    CAS  PubMed  Google Scholar 

  25. Marsh S, McKay JA, Curran S, Murray GI, Cassidy J, McLeod HL. Primary colorectal tumour is not an accurate predictor of thymidylate synthase in lymph node metastasis. Oncol Rep. 2002;9:231–4.

    CAS  PubMed  Google Scholar 

  26. Koumarianou A, Tzeveleki I, Mekras D, Eleftheraki AG, Bobos M, Wirtz R, et al. Prognostic markers in early-stage colorectal cancer: significance of TYMS mRNA expression. Anticancer Res. 2014;34:4949–62.

    PubMed  Google Scholar 

  27. Lassmann S, Hennig M, Rosenberg R, Nährig J, Schreglmann J, Krause F, et al. Thymidine phosphorylase, dihydropyrimidine dehydrogenase and thymidylate synthase mRNA expression in primary colorectal tumors-correlation to tumor histopathology and clinical follow-up. Int J Colorectal Dis. 2006;21:238–47.

    Article  PubMed  Google Scholar 

  28. Mimori K, Matsuyama A, Yoshinaga K, Yamashita K, Masuda T, Inoue H, et al. Localization of thymidine phosphorylase expression in colorectal carcinoma tissues by in situ RT-PCR assay. Oncology. 2002;62:327–32.

    Article  CAS  PubMed  Google Scholar 

  29. Tokunaga Y, Hosogi H, Hoppou T, Nakagami M, Tokuka A, Ohsumi K. Prognostic value of thymidine phosphorylase/platelet-derived endothelial cell growth factor in advanced colorectal cancer after surgery: evaluation with a new monoclonal antibody. Surgery. 2002;131:541–7.

    Article  PubMed  Google Scholar 

  30. Samimi G, Katano K, Holzer AK, Safaei R, Howell SB. Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharm. 2004;66:25–32.

    Article  CAS  Google Scholar 

  31. Martinez-Balibrea E, Martínez-Cardús A, Musulén E, Ginés A, Manzano JL, Aranda E, et al. Increased levels of copper efflux transporter ATP7B are associated with poor outcome in colorectal cancer patients receiving oxaliplatin-based chemotherapy. Int J Cancer. 2009;124:2905–10.

    Article  CAS  PubMed  Google Scholar 

  32. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    Article  CAS  PubMed  Google Scholar 

  33. Candeil L, Gourdier I, Peyron D, Vezzio N, Copois V, Bibeau F, et al. ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer. 2004;109:848–54.

    Article  CAS  PubMed  Google Scholar 

  34. Liu HG, Pan YF, You J, Wang OC, Huang KT, Zhang XH. Expression of ABCG2 and its significance in colorectal cancer. Asian Pac J Cancer Prev. 2010;11:845–8.

    PubMed  Google Scholar 

  35. Wang X, Xia B, Liang Y, Peng L, Wang Z, Zhuo J, et al. Membranous ABCG2 expression in colorectal cancer independently correlates with shortened patient survival. Cancer Biomark. 2013;13:81–8.

    Article  CAS  PubMed  Google Scholar 

  36. Debunne H, Ceelen W. Mucinous differentiation in colorectal cancer: molecular, histological and clinical aspects. Acta Chir Belg. 2013;113:385–90.

    Article  CAS  PubMed  Google Scholar 

  37. Yeakley JM, Tronchère H, Olesen J, Dyck JA, Wang HY, Fu XD. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J Cell Biol. 1999;145:447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schenk PW, Boersma AW, Brandsma JA, den Dulk H, Burger H, Stoter G, et al. SKY1 is involved in cisplatin-induced cell kill in Saccharomyces cerevisiae, and inactivation of its human homologue, SRPK1, induces cisplatin resistance in a human ovarian carcinoma cell line. Cancer Res. 2001;61:6982–6.

    CAS  PubMed  Google Scholar 

  39. Thorsen K, Mansilla F, Schepeler T, Oster B, Rasmussen MH, Dyrskjot L, et al. Alternative splicing of SLC39A14 in colorectal cancer is regulated by the Wnt pathway. Mol Cell Proteom. 2011;10:M110.002998.

    Article  CAS  Google Scholar 

  40. Plasencia C, Martinez-Balibrea E, Martinez-Cardus A, Quinn DI, Abad A, Neamati N. Expression analysis of genes involved in oxaliplatin response and development of oxaliplatin-resistant HT29 colon cancer cells. Int J Oncol. 2006;29:225–35.

    CAS  PubMed  Google Scholar 

  41. Hayes GM, Carrigan PE, Miller LJ. Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res. 2007;67:2072–80.

    Article  CAS  PubMed  Google Scholar 

  42. Yi N, Xiao M, Jiang F, Liu Z, Ni W, Lu C, et al. SRPK1 is a poor prognostic indicator and a novel potential therapeutic target for human colorectal cancer. Onco Targets Ther. 2018;11:5359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv263.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this project was provided by the Bons Secours Hospital Dublin through the RCSI StAR MD scholarship and by the Beaumont Hospital Colorectal Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. M. Prehn.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connell, E., Reynolds, I.S., Salvucci, M. et al. Mucinous and non-mucinous colorectal cancers show differential expression of chemotherapy metabolism and resistance genes. Pharmacogenomics J 21, 510–519 (2021). https://doi.org/10.1038/s41397-021-00229-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00229-5

This article is cited by

Search

Quick links