Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Soil bacterium manipulates antifungal weapons by sensing intracellular type IVA secretion system effectors of a competitor

Abstract

Soil beneficial bacteria can effectively inhibit bacterial pathogens by assembling contact-dependent killing weapons, such as the type IVA secretion system (T4ASS). It’s not clear whether these antibacterial weapons are involved in biotrophic microbial interactions in soil. Here we showed that an antifungal antibiotic 2,4-DAPG production of the soil bacterium, Pseudomonas protegens can be triggered by another soil bacterium, Lysobacter enzymogenes, via T4ASS by co-culturing on agar plates to mimic cell-to-cell contact. We demonstrated that the induced 2,4-DAPG production of P. protegens is achieved by intracellular detection of the T4ASS effector protein Le1519 translocated from L. enzymogenes. We defined Le1519 as LtaE (Lysobacter T4E triggering antifungal effects), which specifically stimulates the expression of 2,4-DAPG biosynthesis genes in P. protegens, thereby protecting soybean seedlings from infection by the fungus Rhizoctonia solani. We further found that LtaE directly bound to PhlF, a pathway-specific transcriptional repressor of the 2,4-DAPG biosynthesis, then activated the 2,4-DAPG production. Our results highlight a novel pattern of microbial interspecies and interkingdom interactions, providing a unique case for expanding the diversity of soil microbial interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-culture of P. protegens and L. enzymogenes on PDA plates triggered interspecies antifungal action.
Fig. 2: P. protegens was activated to inhibit the growth of nearby fungi through intracellular reception/sensing of the L. enzymogenes T4ASS effector LtaE.
Fig. 3: LtaE was a T4E that could be translocated from L. enzymogenes to P. protegens using T4ASS.
Fig. 4: P. protegens activated 2,4-DAPG production through intracellular sensing of LtaE.
Fig. 5: Co-culture of P. protegens and L. enzymogenes or expression of ltaE in P. protegens protected soybean from Rhizoctonia solani infection.
Fig. 6: LtaE directly interacted with PhlF, a pathway-specific transcriptional repressor of 2,4-DAPG biosynthesis.
Fig. 7: LtaE binding alleviated the repressive function of PhlF.

Similar content being viewed by others

Data availability

The sequence data from the present study have been submitted to the NCBI GenBank under the following accession numbers: MW052467 (Le0908), MW052471 (Le1519), MW052474 (Le3316), MW052488 (Le4230), MW052491 (Le4236), MW052493 (Le4253), MW052492 (VirD4).

References

  1. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:589.

    Article  PubMed  Google Scholar 

  2. Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol. 2006;4:249–58.

    Article  CAS  PubMed  Google Scholar 

  3. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr. 2016;4:VMBF-0012–2015.

    Article  Google Scholar 

  4. Shen X, Wang BX, Yang ND, Zhang LL, Shen DY, Wu HJ, et al. Lysobacter enzymogenes antagonizes soilborne bacteria using the type IV secretion system. Environ Microbiol. 2021;23:4673–88.

    Article  CAS  PubMed  Google Scholar 

  5. Purtschert-Montenegro G, Cárcamo-Oyarce G, Pinto-Carbó M, Agnoli K, Bailly A, Eberl L. Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat Microbiol. 2022;7:1547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 2017;11:972–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernal P, Llamas MA, Filloux A, Type VI. secretion systems in plant-associated bacteria. Environ Microbiol. 2018;20:1–15.

    Article  PubMed  Google Scholar 

  8. Hernandez RE, Gallegos‐Monterrosa R, Coulthurst SJ, Type VI. secretion system effector proteins: effective weapons for bacterial competitiveness. Cell Microbiol. 2020;22:e13241.

    Article  CAS  PubMed  Google Scholar 

  9. Liang XY, Kamal F, Pei TT, Xu P, Mekalanos JJ, Dong TG. An onboard checking mechanism ensures effector delivery of the type VI secretion system in Vibrio cholerae. Proc Natl Acad Sci USA. 2019;116:23292–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jurėnas D, Journet L. Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol. 2020;115:383–94.

    Article  PubMed  Google Scholar 

  11. Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol. 2021;19:567–84.

    Article  CAS  PubMed  Google Scholar 

  12. Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol. 2018;107:455–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voth DE, Broederdorf LJ, Graham JG. Bacterial type IV secretion systems: versatile virulence machines. Future Microbiol. 2012;7:241–57.

    Article  CAS  PubMed  Google Scholar 

  14. Christie PJ. Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta. 2004;1694:219–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vergunst AC, van Lier MC, den Dulk-Ras A, Grosse Stüve TA, Ouwehand A, Hooykaas PJ. Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA. 2005;102:832–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cascales E, Christie PJ. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 2004;304:1170–73.

    Article  CAS  PubMed  Google Scholar 

  17. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CM, Regensburg-Tuınk TJ, Hooykaas PJ. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 2000;290:979–82.

    Article  CAS  PubMed  Google Scholar 

  18. Schrammeijer B, Dulk‐Ras AD, Vergunst AC, Jurado Jácome E, Hooykaas PJ. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res. 2003;31:860–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Backert S, Tegtmeyer N, Fischer W. Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol. 2015;10:955–65.

    Article  CAS  PubMed  Google Scholar 

  20. Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 2008;10:1573–81.

    Article  CAS  PubMed  Google Scholar 

  21. Yan Q, Lin MQ, Huang WY, Teymournejad O, Johnson JM, Hays FA, et al. Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation. Proc Natl Acad Sci USA. 2018;115:E8977–E8986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rikihisa Y. The “biological weapons” of Ehrlichia chaffeensis: novel molecules and mechanisms to subjugate host cells. Front Cell Infect Microbiol. 2022;11:830180.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rikihisa Y. Role and function of the type IV secretion system in Anaplasma and Ehrlichia species. Curr Top Microbiol Immunol. 2017;413:297–321.

    CAS  PubMed  Google Scholar 

  24. Yan Q, Zhang W, Lin M, Teymournejad O, Budachetri K, Lakritz J, et al. Iron robbery by intracellular pathogen via bacterial effector–induced ferritinophagy. Proc Natl Acad Sci USA. 2021;118:e2026598118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chandran Darbari V, Waksman G. Structural biology of bacterial type IV secretion systems. Annu Rev Biochem. 2015;84:603–29.

    Article  CAS  PubMed  Google Scholar 

  26. Hubber A, Roy CR. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol. 2010;26:261–83.

    Article  CAS  PubMed  Google Scholar 

  27. Escoll P, Song O-R, Viana F, Steiner B, Lagache T, Olivo-Marin J-C, et al. Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell Host Microbe. 2017;22:302–316.e7.

    Article  CAS  PubMed  Google Scholar 

  28. Luo ZQ, Isberg RR. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA. 2004;101:841–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolfgang MC, Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G, et al. The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog. 2019;15:e1007651.

    Article  Google Scholar 

  30. Souza DP, Oka GU, Alvarez-Martinez CE, Bisson AW, Dunger G, Hobeika L, et al. Bacterial killing via a type IV secretion system. Nat Commun. 2015;6:6453.

    Article  CAS  PubMed  Google Scholar 

  31. Alegria MC, Souza DP, Andrade MO, Docena C, Khater L, Ramos CHI, et al. Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J Bacteriol. 2005;187:2315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oka GU, Souza DP, Cenens W, Matsuyama BY, Cardoso MVC, Oliveira LC, et al. Structural basis for effector recognition by an antibacterial type IV secretion system. Proc Natl Acad Sci USA. 2022;119:e2112529119.

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Yang F, Yaoyao E, Yuan J, Raza W, Huang QW, et al. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil. Front Microbiol. 2016;7:1893.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Zhou GY, Qin YX, Wang RF, Li HY, Xu F, et al. Sulfate removal performance and co-occurrence patterns of microbial community in constructed wetlands treating saline wastewater. J Water. Process Eng. 2021;43:102266.

    Google Scholar 

  35. Wu H, Wu H, Jiao Y, Zhang Z, Rensing C, Lin W. The combination of biochar and PGPBs stimulates the differentiation in rhizosphere soil microbiome and metabolites to suppress soil‐borne pathogens under consecutive monoculture regimes. GCB Bioenerg. 2021;14:84–103.

    Article  Google Scholar 

  36. Zhu L, Yan H, Zhou GS, Jiang CH, Liu P, Yu G, et al. Insights into the mechanism of the effects of rhizosphere microorganisms on the quality of authentic Angelica sinensis under different soil microenvironments. BMC Plant Biol. 2021;21:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang MM, Ren SS, Shen DY, Yang ND, Wang BX, Han S, et al. An intrinsic mechanism for coordinated production of the contact-dependent and contact-independent weapon systems in a soil bacterium. PLoS Pathog. 2020;16:e1008967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F. Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol. 1992;58:353–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aliferis KA, Faubert D, Jabaji S. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS One. 2014;9:e111930.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mager A, Safran T, Engelberg-Kulka H. Intracellular localization of the proteins encoded by some type II toxin-antitoxin systems in Escherichia coli. mBio 2021;12:e0141721.

    Article  PubMed  Google Scholar 

  41. Han S, Shen DY, Wang YC, Chou SH, Gomelsky M, Gao YG, et al. A YajQ-LysR-like, cyclic di-GMP-dependent system regulating biosynthesis of an antifungal antibiotic in a crop-protecting bacterium, Lysobacter enzymogenes. Mol Plant Pathol. 2020;21:218–29.

    Article  CAS  PubMed  Google Scholar 

  42. Duan KM, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol. 2003;50:1477–91.

    Article  CAS  PubMed  Google Scholar 

  43. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hersch SJ, Lam L, Dong TG. Engineered type six secretion systems deliver active exogenous effectors and Cre recombinase. mBio 2021;12:e0111521.

    Article  PubMed  Google Scholar 

  45. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 2005;23:873–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qian GL, Hu BS, Jiang YH, Liu FQ. Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens. Agric Sci China. 2009;8:68–75.

    Article  CAS  Google Scholar 

  47. Yu FG, Zaleta-Rivera K, Zhu XC, Huffman J, Millet JC, Harris SD, et al. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother. 2007;51:64–72.

    Article  CAS  PubMed  Google Scholar 

  48. Wang P, Chen HF, Qian GL, Liu FQ. LetR is a TetR family transcription factor from Lysobacter controlling antifungal antibiotic biosynthesis. Appl Microbiol Biotechnol. 2017;101:3273–82.

    Article  CAS  PubMed  Google Scholar 

  49. Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, et al. Bacteria-killing Type IV secretion systems. Front Microbiol. 2019;10:1078.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Basler M, Ho BT, Mekalanos JJ. Tit-for-tat: Type VI secretion system counterattack during bacterial cell-cell interactions. Cell 2013;152:884–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, Load, Fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 2016;24:51–62.

    Article  CAS  PubMed  Google Scholar 

  52. Wang J, Brackmann M, Castano-Diez D, Kudryashev M, Goldie KN, Maier T, et al. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat Microbiol. 2017;2:1507–12.

    Article  CAS  PubMed  Google Scholar 

  53. Hassan KA, Johnson A, Shaffer BT, Ren QH, Kidarsa TA, Elbourne LDH, et al. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 2010;12:899–915.

    Article  CAS  PubMed  Google Scholar 

  54. Kidarsa TA, Shaffer BT, Goebel NC, Roberts DP, Buyer JS, Johnson A, et al. Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. Environ Microbiol. 2013;15:716–35.

    Article  CAS  PubMed  Google Scholar 

  55. Kay E, Dubuis C, Haas D. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA. 2005;102:17136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diniz JA, Liu YC, Coulthurst SJ. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol. 2015;17:1742–51.

    Article  Google Scholar 

  57. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abbas A, Morrissey JP, Marquez PC, Sheehan MM, Delany IR, O’Gara F. Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol. 2002;184:3008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu X, Liu J, Zhang W, Zhang L. Multiple-level regulation of 2,4-Diacetylphloroglucinol production by the sigma regulator PsrA in Pseudomonas fluorescens 2P24. PLoS One. 2012;7:e50149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tian T, Wu XG, Duan HM, Zhang LQ. The resistance-nodulation-division efflux pump EmhABC influences the production of 2,4-diacetylphloroglucinol in Pseudomonas fluorescens 2P24. Microbiol-Sgm. 2010;156:39–48.

    Article  CAS  Google Scholar 

  61. Zhao MM, Lyu N, Wang D, Wu XG, Zhao YZ, Zhang LQ, et al. PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24. Sci Rep. 2020;10:4296.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tian T, Sun BB, Zhang W, Wei J, Li W, Zhang LQ. OmpR regulates the intracellular concentration of 2,4-Diacetylphloroglucinol by affecting the transcriptional activity of the hydrolase PhlG in Pseudomonas fluorescens 2P24. J Pure. Appl Microbiol. 2015;9:189–200.

    CAS  Google Scholar 

  63. Wang NN, Han N, Tian RZ, Chen JL, Gao XN, Wu ZR, et al. Role of the type VI secretion system in the pathogenicity of Pseudomonas syringae pv. actinidiae, the causative agent of kiwifruit bacterial canker. Front Microbiol. 2021;12:627785.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, et al. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. Mol Plant Pathol. 2020;21:871–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song L, Pan JF, Yang YT, Zhang ZX, Cui R, Jia SK, et al. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat Commun. 2021;12:423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae Type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA. 2010;107:19520–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang F, Waterfield NR, Yang J, Yang GW, Jin QA. Pseudomonas aeruginosa Type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic Cells. Cell Host Microbe. 2014;15:600–10.

    Article  CAS  PubMed  Google Scholar 

  68. Kamal F, Liang X, Manera K, Pei TT, Kim H, Lam LG, et al. Differential cellular response to translocated toxic effectors and physical penetration by the type VI secretion system. Cell Rep. 2020;31:107766.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Qirong Shen (Nanjing Agricultural University, China) for providing Trichoderma guizhouense NJAU 4742.

Funding

This study was funded by the National Natural Science Foundation of China (U22A20486, 32072470, 31872016 to GQ, and 32272619 to XS), the Natural Key Research and Development Program (2022YFD1400200 to GQ), and Science and technology project of Shanxi Branch of China National Tobacco Corporation (KJ-2022-04 to GQ).

Author information

Authors and Affiliations

Authors

Contributions

GQ, TL, and XS conceived the project and designed experiments. BW, ZZ, FX, ZY, and ZL carried out experiments. BW, DS, LW, HW, and GQ analyzed data. GQ, TL, QY, QW, and XS wrote and revised the manuscript.

Corresponding author

Correspondence to Guoliang Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, Z., Xu, F. et al. Soil bacterium manipulates antifungal weapons by sensing intracellular type IVA secretion system effectors of a competitor. ISME J 17, 2232–2246 (2023). https://doi.org/10.1038/s41396-023-01533-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01533-7

This article is cited by

Search

Quick links