Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trichlorobacter ammonificans, a dedicated acetate-dependent ammonifier with a novel module for dissimilatory nitrate reduction to ammonia

Abstract

Dissimilatory nitrate reduction to ammonia (DNRA) is a common biochemical process in the nitrogen cycle in natural and man-made habitats, but its significance in wastewater treatment plants is not well understood. Several ammonifying Trichlorobacter strains (former Geobacter) were previously enriched from activated sludge in nitrate-limited chemostats with acetate as electron (e) donor, demonstrating their presence in these systems. Here, we isolated and characterized the new species Trichlorobacter ammonificans strain G1 using a combination of low redox potential and copper-depleted conditions. This allowed purification of this DNRA organism from competing denitrifiers. T. ammonificans is an extremely specialized ammonifier, actively growing only with acetate as e-donor and carbon source and nitrate as e-acceptor, but H2 can be used as an additional e-donor. The genome of G1 does not encode the classical ammonifying modules NrfAH/NrfABCD. Instead, we identified a locus encoding a periplasmic nitrate reductase immediately followed by an octaheme cytochrome c that is conserved in many Geobacteraceae species. We purified this octaheme cytochrome c protein (TaNiR), which is a highly active dissimilatory ammonifying nitrite reductase loosely associated with the cytoplasmic membrane. It presumably interacts with two ferredoxin subunits (NapGH) that donate electrons from the menaquinol pool to the periplasmic nitrate reductase (NapAB) and TaNiR. Thus, the Nap-TaNiR complex represents a novel type of highly functional DNRA module. Our results indicate that DNRA catalyzed by octaheme nitrite reductases is a metabolic feature of many Geobacteraceae, representing important community members in various anaerobic systems, such as rice paddy soil and wastewater treatment facilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic affiliation of T. ammonificans G1 and distribution of ONR compared to other N-transforming proteins in the order Geobacterales.
Fig. 2: Anaerobic growth dynamics of strain G1.
Fig. 3: Organization of the novel DNRA module in T. ammonificans G1 based on genomic and biochemical analyses.
Fig. 4: Phylogeny of the octaheme cytochrome c proteins potentially involved in nitrogen redox conversions.
Fig. 5: Functional properties of purified T. ammonificans G1 ONR (TaNiR).

Similar content being viewed by others

Data availability

The complete and annotated genome of Trichlorobacter ammonificans G1 is deposited at the European Nucleotide Archive under project PRJEB49551. The mass spectrometry proteomics raw data have been deposited in the ProteomeXchange consortium database with the dataset identifier PXD031212.

References

  1. Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration - genes, enzymes and environmental distribution. J Biotechnol. 2011;155:104–17.

    Article  CAS  PubMed  Google Scholar 

  2. Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76.

    Article  CAS  PubMed  Google Scholar 

  3. Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BBA Bioenerg. 2013;1827:114–35.

    Article  CAS  Google Scholar 

  4. Welsh A, Chee-Sanford JC, Connor LM, Loffler FE, Sanford RA. Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Microbiol. 2014;80:2110–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Behrendt A, de Beer D, Stief P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences. 2013;10:7509–23.

    Article  Google Scholar 

  6. Yoon S, Cruz-Garcia C, Sanford R, Ritalahti KM, Loffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3-/NO2- reduction pathways in Shewanella loihica strain PV-4. ISME J. 2015;9:1093–104.

    Article  CAS  PubMed  Google Scholar 

  7. Sorokin DY, Foti M, Tindall BJ, Muyzer G. Desulfurispirillum alkaliphilum gen. nov sp nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles. 2007;11:363–70.

    Article  CAS  PubMed  Google Scholar 

  8. Cole JA, Brown CM. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol Lett. 1980;7:65–72.

    Article  CAS  Google Scholar 

  9. King D, Nedwell DB. The influence of nitrate concentration upon the end-products of nitrate dissimilation by bacteria in anaerobic salt-marsh sediment. FEMS Microbiol Ecol. 1985;31:23–28.

    Article  CAS  Google Scholar 

  10. Sørensen J. Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl Environ Micro. 1978;35:301–5.

    Article  Google Scholar 

  11. Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification−ecological niches, competition and survival. A Leeuw J Micro. 1982;48:569–83.

    Article  CAS  Google Scholar 

  12. Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science. 2014;345:676–9.

    Article  CAS  PubMed  Google Scholar 

  13. van den Berg EM, Boleij M, Kuenen JG, Kleerebezem R, van Loosdrecht MCM. DNRA and denitrification coexist over a broad range of acetate/N-NO3- ratios, in a chemostat enrichment culture. Front Microbiol. 2016;7:1842.

    PubMed  PubMed Central  Google Scholar 

  14. An SM, Gardner WS. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser. 2002;237:41–50.

    Article  CAS  Google Scholar 

  15. Brunet RC, GarciaGil LJ. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol. 1996;21:131–8.

    Article  CAS  Google Scholar 

  16. Caffrey JM, Bonaglia S, Conley DJ. Short exposure to oxygen and sulfide alter nitrification, denitrification, and DNRA activity in seasonally hypoxic estuarine sediments. FEMS Microbiol Lett. 2019;366:fny288.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol. 2020;22:2124–39.

    Article  CAS  PubMed  Google Scholar 

  18. Pang YM, Wang JL, Li SJ, Ji GD. Long-term sulfide input enhances chemoautotrophic denitrification rather than DNRA in freshwater lake sediments. Environ Pollut. 2021;270:116201.

    Article  CAS  PubMed  Google Scholar 

  19. Popinako A, Antonov M, Tikhonov A, Tikhonova T, Popov V. Structural adaptations of octaheme nitrite reductases from haloalkaliphilic Thioalkalivibrio bacteria to alkaline pH and high salinity. Plos One. 2017;12:e0177392.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tikhonova T, Tikhonov A, Trofimov A, Polyakov K, Boyko K, Cherkashin E, et al. Comparative structural and functional analysis of two octaheme nitrite reductases from closely related Thioalkalivibrio species. FEBS J. 2012;279:4052–61.

    Article  CAS  PubMed  Google Scholar 

  21. Parey K, Fielding AJ, Sorgel M, Rachel R, Huber H, Ziegler C, et al. In meso crystal structure of a novel membrane-associated octaheme cytochrome c from the Crenarchaeon Ignicoccus hospitalis. FEBS J. 2016;283:3807–20.

    Article  CAS  PubMed  Google Scholar 

  22. Haase D, Hermann B, Einsle O, Simon J. Epsilonproteobacterial hydroxylamine oxidoreductase (epsilon Hao): characterization of a ‘missing link’ in the multihaem cytochrome c family. Mol Microbiol. 2017;105:127–38.

    Article  CAS  PubMed  Google Scholar 

  23. Hanson TE, Campbell BJ, Kalis KM, Campbell MA, Klotz MG. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate. Front Microbiol. 2013;4:180.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. Mbio. 2017;8:e00671–17.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marzocchi U, Thorup C, Dam AS, Schramm A, Risgaard-Petersen N. Dissimilatory nitrate reduction by a freshwater cable bacterium. ISME J. 2022;16:50–57.

    Article  CAS  PubMed  Google Scholar 

  26. van den Berg EM, van Dongen U, Abbas B, van Loosdrecht MCM. Enrichment of DNRA bacteria in a continuous culture. ISME J. 2015;9:2153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pfennig N, Lippert KD. Über das vtamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol. 1966;55:245–56.

    CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.

    Article  CAS  PubMed  Google Scholar 

  29. Trüper HG, Schlegel HG. Sulphur Metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium Okenii. Antonie Leeuwenhoek. 1964;30:225–38.

    Article  Google Scholar 

  30. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol. 2018;56:280–5.

    Article  CAS  PubMed  Google Scholar 

  31. Reguera, G & K Kashefi. The electrifying physiology of Geobacter bacteria, 30 years on. Adv Microb Physiol. 2019;74:1–96.

  32. Röling, WFM. The Family Geobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E & Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. pp 157–72.

  33. Doyle R, Marritt SJ, Gwyer JD, Lowe TG, Tikhonova TV, Popov VO, et al. Contrasting catalytic profiles of multiheme nitrite reductases containing CxxCK heme-binding motifs. J Biol Inorg Chem. 2013;18:655–67.

    Article  CAS  PubMed  Google Scholar 

  34. Cole JA. Anaerobic bacterial response to nitric oxide stress: widespread misconceptions and physiologically relevant responses. Mol Microbiol. 2021;116:29–40.

    Article  CAS  PubMed  Google Scholar 

  35. van Wonderen JH, Burlat B, Richardson DJ, Cheesman MR, Butt JN. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem. 2008;283:9587–94.

    Article  PubMed  Google Scholar 

  36. Wang J, Vine CE, Balasiny BK, Rizk J, Bradley CL, Tinajero-Trejo M, et al. The roles of the hybrid cluster protein, Hcp and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress. Mol Microbiol. 2016;100:877–92.

    Article  CAS  PubMed  Google Scholar 

  37. Klotz MG, Schmid MC, Strous M, Op den Camp HJM, Jetten MSM, Hooper AB. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol. 2008;10:3150–63.

    Article  CAS  PubMed  Google Scholar 

  38. Tikhonova TV, Slutsky A, Antipov AN, Boyko KM, Polyakov KM, Sorokin DY, et al. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. BBA Proteins Proteom. 2006;1764:715–23.

    Article  CAS  Google Scholar 

  39. Atkinson SJ, Mowat CG, Reid GA, Chapman SK. An octaheme c-type cytochrome from Shewanella oneidensis can reduce nitrite and hydroxylamine. FEBS Lett. 2007;581:3805–8.

    Article  CAS  PubMed  Google Scholar 

  40. Akunna JC, Bizeau C, Moletta R. Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations - ammonification, denitrification and methanogenic activities. Environ Technol. 1994;15:41–49.

    Article  CAS  Google Scholar 

  41. Behrendt A, Tarre S, Beliavski M, Green M, Klatt J, de Beer D, et al. Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal. Bioresour Technol. 2014;171:291–7.

    Article  CAS  PubMed  Google Scholar 

  42. Buresh RJ, Patrick WH. Nitrate reduction to ammonium and organic nitrogen in an estuarine sediment. Soil Biol Biochem. 1981;13:279–83.

    Article  CAS  Google Scholar 

  43. Matheson FE, Nguyen ML, Cooper AB, Burt TP, Bull DC. Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecol Eng. 2002;19:249–64.

    Article  Google Scholar 

  44. Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences. 2011;8:1779–91.

    Article  Google Scholar 

  45. Dahl TW, Chappaz A, Hoek J, McKenzie CJ, Svane S, Canfield DE. Evidence of molybdenum association with particulate organic matter under sulfidic conditions. Geobiology. 2017;15:311–23.

    Article  CAS  PubMed  Google Scholar 

  46. Rickard D. The solubility of FeS. Geochim Cosmochim Acta. 2006;70:5779–89.

    Article  CAS  Google Scholar 

  47. Masuda Y, Itoh H, Shiratori Y, Isobe K, Otsuka S, Senoo K. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ. 2017;32:180–3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Buckley A, MacGregor B, Teske A. Identification, expression and activity of candidate nitrite reductases from orange Beggiatoaceae, Guaymas Basin. Front Microbiol. 2019;10:644.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spring S, Rohde M, Bunk B, Spröer C, Will SE, Neumann-Schaal M. New insights into the energy metabolism and taxonomy of Deferribacteres revealed by the characterization of a new isolate from a hypersaline microbial mat. Environ Microbiol. 2022;24:2543–75.

    Article  CAS  PubMed  Google Scholar 

  50. Corker H, Poole RK. Nitric oxide formation by Escherichia coli - dependence on nitrite reductase, the NO-sensing regulator FNR, and flavohemoglobin Hmp. J Biol Chem. 2003;278:31584–92.

    Article  CAS  PubMed  Google Scholar 

  51. Youngblut M, Judd ET, Srajer V, Sayyed B, Goelzer T, Elliott SJ, et al. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. J Biol Inorg Chem. 2012;17:647–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ben Abbas for technical support, Geert Cremers for assistance in genome assembly and closure, and Berhard Schink for nomenclatural advise. DYS and MCMvL were supported by the Gravitation Program of the Dutch Ministry of Education, Culture and Science (SIAM grant 024.002.002); TVT, NID, AYS and VOP by the Russian Science Foundation (grant 23-74-30004); HK and SL by the Netherlands Organization for Scientific Research (grants VI.Veni.192.086 and 016.Vidi.189.050, respectively). In addition, Russian authors also had support from the Russian Ministry of Science and Higher Education. The LABGeM (CEA/Genoscope & CNRS UMR8030), the France Génomique and French Bioinformatics Institute national infrastructures (funded as part of Investissement d'Avenir program managed by Agence Nationale pour la Recherche, contracts ANR-10-INBS-09 and ANR-11-INBS-0013) are acknowledged for support within the MicroScope annotation platform.

Author information

Authors and Affiliations

Authors

Contributions

DYS, TVT, GJK, and MCMvL conceived the study and designed the research. GJK, VOP, MCMvL, and SL supervised the project. DYS, TVT, EMvdB, RSH, NID, and AYS performed experiments and data analysis. HK, MP, and SL performed proteomic and bioinformatic analyses. DYS, HK, and SL wrote the manuscript with input from all authors. All authors discussed results and commented on the manuscript.

Corresponding authors

Correspondence to Dimitry Y. Sorokin or Sebastian Lücker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, D.Y., Tikhonova, T.V., Koch, H. et al. Trichlorobacter ammonificans, a dedicated acetate-dependent ammonifier with a novel module for dissimilatory nitrate reduction to ammonia. ISME J 17, 1639–1648 (2023). https://doi.org/10.1038/s41396-023-01473-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01473-2

Search

Quick links