Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacterial–fungal interactions promote parallel evolution of global transcriptional regulators in a widespread Staphylococcus species

Abstract

Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food- and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus. By the end of the experiment, all populations co-cultured with the yeast were dominated by pigment and colony morphology mutant phenotypes. Populations of S. xylosus grown alone, with B. aurantiacum, or with P. solitum did not evolve novel phenotypic diversity. Whole-genome sequencing of individual mutant isolates across all four treatments identified numerous unique mutations in the operons for the SigB, Agr, and WalRK global regulators, but only in the D. hansenii treatment. Phenotyping and RNA-seq experiments highlighted altered pigment and biofilm production, spreading, stress tolerance, and metabolism of S. xylosus mutants. Fitness experiments revealed antagonistic pleiotropy, where beneficial mutations that evolved in the presence of the yeast had strong negative fitness effects in other biotic environments. This work demonstrates that bacterial-fungal interactions can have long-term evolutionary consequences within multispecies microbiomes by facilitating the evolution of strain diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The yeast Debaryomyces hansenii causes phenotypic diversification of S. xylosus BC10 during experimental evolution.
Fig. 2: Whole-genome sequencing identifies mutations in putative global regulators of S. xylosus BC10 in the +Debaryomyces treatment.
Fig. 3: Phenotypic assays reveal biological impacts of global regulator mutations in evolved S. xylosus BC10.
Fig. 4: RNA sequencing highlights transcriptomic impacts of global regulator mutations in S. xylosus BC10.
Fig. 5: Growth and competition experiments reveal fitness of evolved S. xylosus mutants in different biotic environments.

Data availability

All raw fastq read files of re-sequenced evolved isolates of S. xylosus BC10 have been deposited in NCBI in BioProject PRJNA856679. Raw RNA-seq read files from this study have been deposited in NCBI in BioProject PRJNA856810.

References

  1. Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM, Palsson BO, et al. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst. 2016;3:238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McCloskey D, Xu J, Schrübbers L, Christensen HB, Herrgård MJ. RapidRIP quantifies the intracellular metabolome of 7 industrial strains of E. coli. Metab Eng. 2018;47:383–92.

    Article  CAS  PubMed  Google Scholar 

  3. Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol. 2004;63:734–41.

    Article  CAS  PubMed  Google Scholar 

  4. Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell. 2016;166:1397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, Kinnison MT, et al. The ecological importance of intraspecific variation. Nat Ecol Evol. 2018;2:57–64.

    Article  PubMed  Google Scholar 

  6. Leventhal GE, Boix C, Kuechler U, Enke TN, Sliwerska E, Holliger C, et al. Strain-level diversity drives alternative community types in millimetre-scale granular biofilms. Nat Microbiol. 2018;3:1295–303.

    Article  CAS  PubMed  Google Scholar 

  7. Ellegaard KM, Engel P. Beyond 16S rRNA community profiling: intra-species diversity in the gut microbiota. Front Microbiol. 2016;7:1475.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, et al. Trait variation in yeast is defined by population history. PLoS Genet. 2011;7:e1002111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev. 2014;38:947–95.

    Article  CAS  PubMed  Google Scholar 

  10. Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol. 2020;18:491–506.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 2017;11:2181–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elena SF, Lenski RE. Microbial genetics: evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457.

    Article  CAS  PubMed  Google Scholar 

  13. Cooper VS. Experimental evolution as a high-throughput screen for genetic adaptations. mSphere. 2018;3:e00121–18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Long A, Liti G, Luptak A, Tenaillon O. Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet. 2015;16:567–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kassen R. Experimental evolution of innovation and novelty. Trends Ecol Evol. 2019;34:712–22.

  16. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. Experimental evolution. Trends Ecol Evol. 2012;27:547–60.

    Article  PubMed  Google Scholar 

  17. Kassen R. Experimental evolution and the nature of biodiversity. Greenwood Village, CO: Roberts & Company; 2014.

  18. Bailey SF, Bataillon T. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature? Mol Ecol. 2016;25:203–18.

    Article  PubMed  Google Scholar 

  19. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol. 2004;19:189–97.

    Article  PubMed  Google Scholar 

  20. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol. 2008;62:375–401.

    Article  CAS  PubMed  Google Scholar 

  22. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev. 2011;75:583–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.

    Article  CAS  PubMed  Google Scholar 

  24. Pacheco AR, Segrè D. A multidimensional perspective on microbial interactions. FEMS Microbiol Lett. 2019;366:fnz125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cosetta CM, Wolfe BE. Causes and consequences of biotic interactions within microbiomes. Curr Opin Microbiol. 2019;50:35–41.

    Article  CAS  PubMed  Google Scholar 

  26. Johansson J. Evolutionary responses to environmental changes: how does competition affect adaptation? Evolution. 2008;62:421–35.

    Article  PubMed  Google Scholar 

  27. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. Rapid evolution of a native species following invasion by a congener. Science. 2014;346:463–6.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q-G, Ellis RJ, Godfray HCJ. The effect of a competitor on a model adaptive radiation. Evolution. 2012;66:1985–90.

    Article  PubMed  Google Scholar 

  29. Harcombe W. Novel cooperation experimentally evolved between species. Evolution. 2010;64:2166–72.

    PubMed  Google Scholar 

  30. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, Blumstein DT, et al. Relaxed selection in the wild. Trends Ecol Evol. 2009;24:487–96.

    Article  PubMed  Google Scholar 

  32. Bailey SF, Dettman JR, Rainey PB, Kassen R. Competition both drives and impedes diversification in a model adaptive radiation. Proc Biol Sci. 2013;280:20131253.

    PubMed  PubMed Central  Google Scholar 

  33. Hall JPJ, Harrison E, Brockhurst MA. Competitive species interactions constrain abiotic adaptation in a bacterial soil community. Evol Lett. 2018;2:580–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jousset A, Eisenhauer N, Merker M, Mouquet N, Scheu S. High functional diversity stimulates diversification in experimental microbial communities. Sci Adv. 2016;2:e1600124.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Golzar FS, Ferguson GC, Hendrickson HL. Protozoan predation drives adaptive divergence in Pseudomonas fluorescens SBW25; ecology meets experimental evolution. bioRxiv. 2021. https://doi.org/10.1101/2021.07.12.452127.

  37. Chu X-L, Zhang Q-G, Buckling A, Castledine M. Interspecific niche competition increases morphological diversity in multi-species microbial communities. Front Microbiol. 2021;12:2103.

    Article  Google Scholar 

  38. Wolfe BE, Dutton RJ. Fermented foods as experimentally tractable microbial ecosystems. Cell. 2015;161:49–55.

    Article  CAS  PubMed  Google Scholar 

  39. Di Cagno R, Coda R, De Angelis M, Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013;33:1–10.

    Article  PubMed  Google Scholar 

  40. De Vuyst L, Van Kerrebroeck S, Harth H, Huys G, Daniel H-M, Weckx S. Microbial ecology of sourdough fermentations: diverse or uniform? Food Microbiol. 2014;37:11–29.

    Article  PubMed  Google Scholar 

  41. Montel M-C, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, et al. Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol. 2014;177:136–54.

    Article  PubMed  Google Scholar 

  42. Macori G, Cotter PD. Novel insights into the microbiology of fermented dairy foods. Curr Opin Biotechnol. 2018;49:172–8.

    Article  CAS  PubMed  Google Scholar 

  43. Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of industrial microbes. Curr Biol. 2019;29:R381–R393.

    Article  CAS  PubMed  Google Scholar 

  44. Gibbons JG, Rinker DC. The genomics of microbial domestication in the fermented food environment. Curr Opin Genet Dev. 2015;35:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, King JG, et al. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Curr Biol. 2012;22:1403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E, Dumas É, et al. Adaptive horizontal gene transfers between multiple cheese-associated fungi. Curr Biol. 2015;25:2562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bodinaku I, Shaffer J, Connors AB, Steenwyk JL, Kastman E, Rokas A, et al. Rapid phenotypic and metabolomic domestication of wild Penicillium molds on cheese. mBio. 2019;10:e02445–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heo S, Lee J-H, Jeong D-W. Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods. Food Sci Biotechnol. 2020;29:1023–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nagase N, Sasaki A, Yamashita K, Shimizu A, Wakita Y, Kitai S, et al. Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci. 2002;64:245–50.

    Article  PubMed  Google Scholar 

  50. Kastman EK, Kamelamela N, Norville JW, Cosetta CM, Dutton RJ, Wolfe BE. Biotic interactions shape the ecological distributions of Staphylococcus Species. mBio. 2016;7:e01157–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Savage VJ, Chopra I, O’Neill AJ. Population diversification in Staphylococcus aureus biofilms may promote dissemination and persistence. PLoS ONE. 2013;8:e62513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST, Modamio J, et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell. 2014;158:1060–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Niccum BA, Kastman EK, Kfoury N, Robbat A Jr, Wolfe BE. Strain-level diversity impacts cheese rind microbiome assembly and function. mSystems. 2020;5:e00149–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wolfe BE, Button JE, Santarelli M, Dutton RJ. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell. 2014;158:422–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cosetta CM, Kfoury N, Robbat A, Wolfe BE. Fungal volatiles mediate cheese rind microbiome assembly. Environ Microbiol. 2020;22:4745–60.

    Article  CAS  PubMed  Google Scholar 

  56. Hu G, Wang Y, Liu X, Strube ML, Wang B, Kovács ÁT. Species and condition dependent mutational spectrum in experimentally evolved biofilms of Bacilli. bioRxiv. 2022. https://doi.org/10.1101/2022.12.07.519423.

  57. Lanfear R, Kokko H, Eyre-Walker A. Population size and the rate of evolution. Trends Ecol Evol. 2014;29:33–41.

    Article  PubMed  Google Scholar 

  58. Zhao X-F, Buckling A, Zhang Q-G, Hesse E. Specific adaptation to strong competitors can offset the negative effects of population size reductions. Proc Biol Sci. 2018;285:2018000.

    Google Scholar 

  59. Schaik A. The role of σB in the stress response of Gram-positive bacteria–targets for food preservation and safety. Curr Opin Biotechnol. 2005;16:218–24.

    Article  PubMed  Google Scholar 

  60. Bischoff M, Entenza JM, Giachino P. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol. 2001;183:5171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guldimann C, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Resilience in the face of uncertainty: sigma factor B fine-tunes gene expression to support homeostasis in gram-positive bacteria. Appl Environ Microbiol. 2016;82:4456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson DA, Monk AB, Cooper JE, Feil EJ, Enright MC. Evolutionary genetics of the accessory gene regulator (agr) locus in Staphylococcus aureus. J Bacteriol. 2005;187:8312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 2014;22:676–85.

    Article  CAS  PubMed  Google Scholar 

  64. Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008;42:541–64.

    Article  CAS  PubMed  Google Scholar 

  65. Martin PK, Li T, Sun D, Biek DP, Schmid MB. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol. 1999;181:3666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ji Q, Chen PJ, Qin G, Deng X, Hao Z, Wawrzak Z, et al. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nat Commun. 2016;7:11000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dufour P, Jarraud S, Vandenesch F, Greenland T, Novick RP, Bes M, et al. High genetic variability of the agr locus in Staphylococcus species. J Bacteriol. 2002;184:1180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wuster A, Babu MM. Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J Bacteriol. 2008;190:743–6.

    Article  CAS  PubMed  Google Scholar 

  69. Ferreira A, Gray M, Wiedmann M, Boor KJ. Comparative genomic analysis of the sigB operon in Listeria monocytogenes and in other Gram-positive bacteria. Curr Microbiol. 2004;48:39–46.

    Article  CAS  PubMed  Google Scholar 

  70. Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist. 2019;12:2151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marbach H, Mayer K, Vogl C, Lee JYH, Monk IR, Sordelli DO, et al. Within-host evolution of bovine Staphylococcus aureus selects for a SigB-deficient pathotype characterized by reduced virulence but enhanced proteolytic activity and biofilm formation. Sci Rep. 2019;9:13479.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Clauditz A, Resch A, Wieland K-P, Peschel A, Götz F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun. 2006;74:4950–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005;202:209–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davey ME, O’toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64:847–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.

    Article  CAS  PubMed  Google Scholar 

  76. Moons P, Michiels CW, Aertsen A. Bacterial interactions in biofilms. Crit Rev Microbiol. 2009;35:157–68.

    Article  CAS  PubMed  Google Scholar 

  77. Bateman BT, Donegan NP, Jarry TM, Palma M, Cheung AL. Evaluation of a tetracycline-inducible promoter in Staphylococcus aureus in vitro and in vivo and its application in demonstrating the role of sigB in microcolony formation. Infect Immun. 2001;69:7851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lauderdale KJ, Boles BR, Cheung AL, Horswill AR. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun. 2009;77:1623–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vuong C, Saenz HL, Götz F, Otto M. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis. 2000;182:1688–93.

    Article  CAS  PubMed  Google Scholar 

  80. Pollitt EJG, Crusz SA, Diggle SP. Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Sci Rep. 2015;5:17698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pollitt EJG, Diggle SP. Defining motility in the Staphylococci. Cell Mol Life Sci. 2017;74:2943–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaito C, Sekimizu K. Colony spreading in Staphylococcus aureus. J Bacteriol. 2007;189:2553–7.

    Article  CAS  PubMed  Google Scholar 

  83. Dordet-Frisoni E, Gaillard-Martinie B, Talon R, Leroy S. Surface migration of Staphylococcus xylosus on low-agar media. Res Microbiol. 2008;159:263–9.

    Article  CAS  PubMed  Google Scholar 

  84. Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, et al. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl Environ Microbiol. 2013;79:886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu T, Wang X-Y, Cui P, Zhang Y-M, Zhang W-H, Zhang Y. The agr quorum sensing system represses persister formation through regulation of phenol soluble modulins in Staphylococcus aureus. Front Microbiol. 2017;8:2189.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aubourg M, Pottier M, Léon A, Bernay B, Dhalluin A, Cacaci M, et al. Inactivation of the response regulator AgrA has a pleiotropic effect on biofilm formation, pathogenesis and stress response in Staphylococcus lugdunensis. Microbiol Spectr. 2022;10:e0159821.

    Article  PubMed  Google Scholar 

  87. Rao Y, Peng H, Shang W, Hu Z, Yang Y, Tan L, et al. A vancomycin resistance-associated WalK(S221P) mutation attenuates the virulence of vancomycin-intermediate Staphylococcus aureus. J Adv Res. 2021;40:167–78.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Altman DR, Sullivan MJ, Chacko KI, Balasubramanian D, Pak TR, Sause WE, et al. Genome plasticity of agr-defective Staphylococcus aureus during clinical infection. Infect Immun. 2018;86:e00331–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shoji M, Cui L, Iizuka R, Komoto A, Neoh H-M, Watanabe Y, et al. walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:3870–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leroy S, Even S, Micheau P, de La Foye A, Laroute V, Le Loir Y, et al. Transcriptomic analysis of Staphylococcus xylosus in solid dairy matrix reveals an aerobic lifestyle adapted to rind. Microorganisms. 2020;8:1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen P, Zhang J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat Ecol Evol. 2020;4:461–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Quigley L, O’Sullivan O, Beresford TP, Paul Ross R, Fitzgerald GF, Cotter PD. High-throughput sequencing detects subpopulations of bacteria not previously associated with artisanal cheeses. Appl Environ Microbiol. 2012;78:5717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou A-S, Hélias A, et al. Microbial interactions within a cheese microbial community. Appl Environ Microbiol. 2008;74:172–81.

    Article  CAS  PubMed  Google Scholar 

  94. Barber JN, Nicholson LC, Woods LC, Judd LM, Sezmis AL, Hawkey J, et al. Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community. ISME J. 2022;16:1442–52.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gómez P, Hall AR, Paterson S, Buckling A. Rapid decline of adaptation of Pseudomonas fluorescens to soil biotic environment. Biol Lett. 2022;18:20210593.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial–fungal interactions. Nat Rev Microbiol. 2010;8:340–9.

    Article  CAS  PubMed  Google Scholar 

  97. Pierce EC, Dutton RJ. Putting microbial interactions back into community contexts. Curr Opin Microbiol. 2022;65:56–63.

    Article  CAS  PubMed  Google Scholar 

  98. Addis E, Fleet GH, Cox JM, Kolak D, Leung T. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int J Food Microbiol. 2001;69:25–36.

    Article  CAS  PubMed  Google Scholar 

  99. Bertuzzi AS, Walsh AM, Sheehan JJ, Cotter PD, Crispie F, McSweeney PLH, et al. Omics-based insights into flavor development and microbial succession within surface-ripened cheese. mSystems. 2018;3:e00211–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Larpin-Laborde S, Imran M, Bonaïti C, Bora N, Gelsomino R, Goerges S, et al. Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol. 2011;57:651–60.

    Article  CAS  PubMed  Google Scholar 

  101. Cosetta CM, Wolfe BE. Deconstructing and reconstructing cheese rind microbiomes for experiments in microbial ecology and evolution. Curr Protoc Microbiol. 2020;56:e95.

    Article  PubMed  Google Scholar 

  102. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49:W317–W325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the United States National Science Foundation (CAREER IOS/BIO 1942063) to BEW. The authors are grateful to members of the Wolfe lab, including Robert May, Nicolas Louw, Kasturi Lele, Dillon Arrigan, Chris Tomo, and Mak Boylan, for providing extensive feedback on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BN, CC, and BEW designed the study. BN conducted the evolution experiment. CC and BEW conducted the whole-genome resequencing. CC conducted the fitness experiments. BEW conducted and analyzed the RNA-seq experiment. CC, NK, MD, and MP conducted the phenotypic assays. CC, BN, and BEW conducted statistical analyses, created figures, and wrote the first drafts of the manuscript. All authors read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Benjamin E. Wolfe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosetta, C.M., Niccum, B., Kamkari, N. et al. Bacterial–fungal interactions promote parallel evolution of global transcriptional regulators in a widespread Staphylococcus species. ISME J 17, 1504–1516 (2023). https://doi.org/10.1038/s41396-023-01462-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01462-5

Search

Quick links